

METRACAL | MC

Multimeter, Kalibrator

3-349-566-01
11/11.17

Lieferumfang Ansprechpartner

Lieferumfang

- 1 Multimeter, Kalibrator
- 1 Messkabelsatz KS29
- 2 Batterien
- 1 Kurzbedienungsanleitung *
- 1 DAkkS-Kalibrierschein
- * Eine ausführliche Bedienungsanleitung finden Sie zum Download im Internet unter www.gossenmetrawatt.com.

Leistungsumfang

Funktionen	Multimeter	Kalibrator Simulator
V AC / Hz TRMS	•	_
V DC	•	•
Hz (V AC)	•	Impulsgenerator Frequenzgenerator
A AC / Hz TRMS	•	_
A DC	•	Stromgeber Stromsenke
Hz (A AC)	•	_
Widerstand Ω	•	•
Durchgang (1)	•	_
Diode 6 V →	•	_
Temperatur TC	•	•
Temperatur RTD	•	•
Kapazität ⊣⊢	•	_
MIN/MAX/Data Hold	•	_
Speicher 16 MBit 1)	•	_
Merkmale		
IR-Schnittstelle		•
Netzteiladapterbuchse		•
Schutzart (Gehäuse)	IP	65
Messkategorie	300 V CAT II	_

 $^{^{\}rm 1)}$ für 46000 Messwerte, Speicherrate einstellbar zwischen 0,1 s und 9 h

Zubehör (Sensoren, Steckereinsätze, Adapter, Verbrauchsmaterial)

Das für Ihr Messgerät erhältliche Zubehör wird regelmäßig auf die Konformität mit den derzeit gültigen Sicherheitsnormen überprüft und bei Bedarf für neue Einsatzzwecke erweitert. Sie finden das für Ihr Messgerät geeignete aktuelle Zubehör mit Bild, Bestell-Nr., Beschreibung sowie je nach Umfang des Zubehörs mit Datenblatt und Bedienungsanleitung im Internet unter www.gossenmetrawatt.com

Siehe auch Kap. 11 auf Seite 80.

Produktsupport

Technische Anfragen

(Anwendung, Bedienung, Softwareregistrierung)

Bitte wenden Sie sich im Bedarfsfall an:

GMC-I Messtechnik GmbH

Hotline Produktsupport

Telefon D 0900 1 8602-00

A/CH +49 911 8602-0

Telefax +49 911 8602-709

E-Mail support@gossenmetrawatt.com

Softwarefreischaltung METRAwin 10

GMC-I Messtechnik GmbH

Front Office

Telefon +49 911 8602-111 Telefax +49 911 8602-777

E-Mail info@gossenmetrawatt.com

Schulung

Schulungen in Nürnberg, Schulungen vor Ort beim Kunden (Termine, Preise, Anmeldung, Anreise, Unterkunft)

Bitte wenden Sie sich im Bedarfsfall an:

GMC-I Messtechnik GmbH

Bereich Schulung

Telefon +49 911 8602-406 Telefax +49 911 8602-724

E-Mail training@gossenmetrawatt.com

Lieferumfang Ansprechpartner

Rekalibrier-Service

In unserem Service-Center **kalibrieren** und **rekalibrieren** wir (z. B. nach einem Jahr im Rahmen Ihrer Prüfmittelüberwachung, vor Einsatz ...) alle Geräte der GMC-I Messtechnik GmbH und anderer Hersteller und bieten Ihnen ein kostenloses Prüfmittelmanagement.

Reparatur- und Ersatzteil-Service Kalibrierzentrum* und Mietgeräteservice

Bitte wenden Sie sich im Bedarfsfall an:

GMC-I Service GmbH
Service-Center
Thomas-Mann-Straße 20
90471 Nürnberg · Germany
Telefon +49 911 817718-0
Telefax +49 911 817718-253
E-Mail service@gossenmetrawatt.com
www.gmci-service.com

Diese Anschrift gilt nur für Deutschland. Im Ausland stehen Ihnen unsere jeweiligen Vertretungen oder Niederlassungen zur Verfügung.

 DAkkS-Kalibrierlaboratorium für elektrische Messgrößen D-K-15080-01-01 akkreditiert nach DIN EN ISO/IEC 17 025

Akkreditierte Messgrößen: Gleichspannung, Gleichstromstärke, Gleichstromwiderstand, Wechselspannung, Wechselstromstärke, Wechselstrom-Wirkleistung, Wechselstrom-Scheinleistung, Gleichstromleistung, Kapazität, Frequenz und Temperatur

Kompetenter Partner

Die GMC-I Messtechnik GmbH ist zertifiziert nach DIN EN ISO 9001.

Unser DAkkS-Kalibrierlabor ist nach DIN EN ISO/IEC 17025 bei der Deutschen Akkreditierungsstelle GmbH unter der Nummer D-K-15080-01-01 akkreditiert.

Vom **Prüfprotokoll** über den **Werks-Kalibrierschein** bis hin zum **DAkkS-Kalibrierschein** reicht unsere messtechnische Kompetenz.

Ein kostenloses **Prüfmittelmanagement** rundet unsere Angebotspalette ab.

Als Kalibrierlabor kalibrieren wir natürlich herstellerunabhängig.

Servicedienste

- Hol- und Bringdienst
- Express-Dienste (sofort, 24h, weekend)
- Inbetriebnahme und Abrufdienst
- Geräte- bzw. Software-Updates auf aktuelle Normen
- Ersatzteile und Instandsetzung
- Helpdesk
- DAkkS-Kalibrierlabor nach DIN EN ISO/IEC 17025
- Serviceverträge und Prüfmittelmanagement
- Mietgeräteservice
- Altgeräte-Rücknahme

Inhaltsverzeichnis

Inhalt	Seite	Inhalt		Seite
1	Sicherheitsmerkmale und -vorkehrungen 8	5	Messungen	26
1.1	Bestimmungsgemäße Verwendung10	5.1	Umschaltung von Kalibrierfunktion auf Messfunktion	
1.2	Bedeutung der Gefahrensymbole11	5.2	Spannungsmessung	27
1.3	Bedeutung akustischer Warnungen11	5.2.1	Gleichspannungsmessung V DC	
		5.2.2	Wechselspannungs- und Frequenzmessung V AC und Hz	
2	Bedienübersicht – Anschlüsse, Tasten, Drehschalter, Symbole 12	5.3	Widerstandsmessung " Ω "	30
		5.4	Durchgangsprüfung	
3	Inbetriebnahme 16	5.5	Diodenprüfung mit Konstantstrom 1 mA	
3.1	Batterien oder Akkus einsetzen	5.6	Temperaturmessung	
3.2	Einschalten	5.6.1	Messung mit Thermoelementen Temp TC	
3.3	Betriebsparameter setzen		3	
3.4	Ausschalten	5.7	Kapazitätsmessung	
		5.8	Strommessung	
4	Bedienfunktionen 18	5.8.1	Gleichstrommessung direkt A DC	
4.1	Wählen der Messfunktionen und Messbereiche		Wechselstrom- und Frequenzmessung direkt mA AC und Hz	
4.1.1	Automatische Messbereichswahl		Gleichstrommessung mit Zangenstromsensor mA DC	
4.1.2	Manuelle Messbereichswahl		Wechselstrommessung mit Zangenstromsensor A AC und Hz	
4.1.3	Schnelle Messungen19	5.8.5	Gleich- und Wechselstrommessung mit Zangenstromwandler mA	
4.2	Nullpunktkorrektur/Relativmessungen19		mA AC und Hz	42
4.3	Anzeige (LCD)20			
4.3.1	Messbereichsüberschreitung20			
4.4	Messwertspeicherung "DATA" (Auto-Hold / Compare)21			
4.4.1	Minimalwert- und Maximalwertspeicherung "MIN/MAX"22			
4.5	Messdatenaufzeichnung23			

6 GMC-I Messtechnik GmbH

Seite

Inhalt	S	eite I r	nha
6 6.1 6.2	Kalibrierfunktionen	44)
6.3 6.4 6.5 6.5.1	Impuls-, Frequenzgenerator (positiver Rechteckimpuls) [Hz]	46 1 47 1 48 1	0.1 0.2 0.3 0.4
6.5.2 6.6 6.6.1 6.6.2	Temperatursimulation von Thermoelementen – Temp TC-Stellung Stromquelle und Stromsenke [mA] Stromsenke – Simulation eines Zweileiter-Transmitters	49 1 51 1 52	0.5 0.6 0.7
6.7 6.7.1 6.7.2 6.7.3	Intervall- und Rampenfunktionen Intervallverläufe – Funktion INT Ausgabe als periodische Rampe – Funktion RAMP Dualmode (gleichzeitig geben und messen)	53 1 56 ⁵⁸ 1	1.1
7 7.1 7.2 7.3 7.4 7.5	Geräte- und Messparameter Pfade zu den Parametern Liste sämtlicher Parameter Parameterabfragen – Menü InFo (als Laufschrift) Parametereingaben – Menü SETUP Standardeinstellungen (Werkseinstellungen, Defaulteinstellungen)	60 61 61 62 62	1.4 2
8 8.1 8.2	Schnittstellenbetrieb Schnittstelle aktivieren Schnittstellenparameter einstellen	66	

9 Technische Daten 10 Wartung und Kalibrierung 10.1 Signalisierungen – Fehlermeldungen 10.2 Batterien 10.3 Sicherung 10.4 Wartung Gehäuse 10.5 Rücknahme und umweltverträgliche Entsorgung 10.6 Rekalibrierung 10.7 Herstellergarantie 11 Zubehör 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang)	ınnan		Seite
 10.1 Signalisierungen – Fehlermeldungen 10.2 Batterien 10.3 Sicherung 10.4 Wartung Gehäuse 10.5 Rücknahme und umweltverträgliche Entsorgung 10.6 Rekalibrierung 10.7 Herstellergarantie 11 Zubehör 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	9	Technische Daten	68
 10.1 Signalisierungen – Fehlermeldungen 10.2 Batterien 10.3 Sicherung 10.4 Wartung Gehäuse 10.5 Rücknahme und umweltverträgliche Entsorgung 10.6 Rekalibrierung 10.7 Herstellergarantie 11 Zubehör 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	10	Wartung und Kalibrierung	76
10.2 Batterien 10.3 Sicherung 10.4 Wartung Gehäuse 10.5 Rücknahme und umweltverträgliche Entsorgung 10.6 Rekalibrierung 10.7 Herstellergarantie 11 Zubehör 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang)	10.1		
 10.4 Wartung Gehäuse 10.5 Rücknahme und umweltverträgliche Entsorgung 10.6 Rekalibrierung 10.7 Herstellergarantie 11 Zubehör 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	10.2	Batterien	76
 10.4 Wartung Gehäuse 10.5 Rücknahme und umweltverträgliche Entsorgung 10.6 Rekalibrierung 10.7 Herstellergarantie 11 Zubehör 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	10.3	Sicherung	77
 10.6 Rekalibrierung 10.7 Herstellergarantie 11 Zubehör 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	10.4		
 10.6 Rekalibrierung 10.7 Herstellergarantie 11 Zubehör 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	10.5	Rücknahme und umweltverträgliche Entsorgung	78
 10.7 Herstellergarantie 11 Zubehör 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	10.6		
 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	10.7		
 11.1 Allgemein 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	11	Zubehör	80
 11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29) 11.3 Netzteiladapter NA X-TRA (kein Lieferumfang) 11.4 Schnittstellenzubehör (kein Lieferumfang) 	11.1		
11.3 Netzteiladapter NA X-TRA (kein Lieferumfang)	11.2	Technische Daten der Messleitungen	
11.4 Schnittstellenzubehör (kein Lieferumfang)		(Lieferumfang Sicherheitskabelset KS29)	80
11.4 Schnittstellenzubehör (kein Lieferumfang)	11.3	Netzteiladapter NA X-TRA (kein Lieferumfang)	80
40 Olfaboradoromalabela	11.4		
12 Stichwortverzeichnis	12	Stichwortverzeichnis	82

1 Sicherheitsmerkmale und -vorkehrungen

Sie haben sich für ein Gerät entschieden, welches Ihnen ein sehr hohes Maß an Sicherheit bietet.

Dieses Gerät erfüllt die Anforderungen der geltenden europäischen und nationalen EG-Richtlinien. Dies bestätigen wir durch die CE-Kennzeichnung. Die entsprechende Konformitätserklärung kann von GMC-I Messtechnik GmbH angefordert werden.

Das Gerät ist entsprechend den Sicherheitsbestimmungen IEC 61010–1/DIN EN 61010–1/VDE 0411–1

gebaut und geprüft. Bei bestimmungsgemäßer Verwendung (siehe Seite 10) gewährleistet es sowohl die Sicherheit der bedienenden Person als auch die des Gerätes. Deren Sicherheit ist jedoch nicht garantiert, wenn das Gerät unsachgemäß bedient oder unachtsam behandelt wird.

Um den sicherheitstechnisch einwandfreien Zustand zu erhalten und die gefahrlose Verwendung sicherzustellen, ist es unerlässlich, dass Sie vor dem Einsatz Ihres Gerätes die Bedienungsanleitung sorgfältig und vollständig lesen und sie in allen Punkten befolgen.

Messkategorien und ihre Bedeutung nach IEC 61010-1

CAT	Definition				
ı	Messungen an Stromkreisen, die nicht direkt mit dem Netz verbunden sind: z. B. Bordnetze in KFZ oder Flugzeugen, Batterien				
II	Messungen an Stromkreisen, die elektrisch direkt mit dem Niederspannungsnetz verbunden sind: über Stecker, z. B. in Haushalt, Büro, Labor				
III	Messungen in der Gebäudeinstallation: Stationäre Verbraucher, Verteileranschluss, Geräte fest am Verteiler				

Für Ihr vorliegendes Messgerät gilt die Messkategorie und zugeordnete maximale Bemessungsspannung, z. B. 300 V CAT II, die auf dem Gerät aufgedruckt sind. Für die Anwendung der Messleitungen siehe Kap. 11.2.

Beachten Sie folgende Sicherheitsvorkehrungen:

- Das Multimeter darf nicht in Ex-Bereichen eingesetzt werden.
- Das Multimeter darf nur von Personen bedient werden, die in der Lage sind, Berührungsgefahren zu erkennen und Sicherheitsvorkehrungen zu treffen. Berührungsgefahr lt. Norm besteht überall dort, wo Spannungen auftreten können, die größer sind als 33 V (Effektivwert) bzw. 70 V DC. Wenn Sie Messungen durchführen, bei denen Berührungsgefahr besteht, dann vermeiden Sie es, alleine zu arbeiten. Ziehen Sie eine zweite Person hinzu.
- Die maximal zulässige Spannung zwischen den Spannungsmessanschlüssen bzw. allen Anschlüssen gegen Erde beträgt 300 V in der Messkategorie II.
- Rechnen Sie damit, dass an Messobjekten (z. B. an defekten Geräten) unvorhergesehene Spannungen auftreten können. Kondensatoren können z. B. gefährlich geladen sein.

- Versichern Sie sich, dass die Messleitungen in einwandfreiem Zustand sind, z. B. unbeschädigte Isolation, keine Unterbrechung in Leitungen und Steckern usw.
- In Stromkreisen mit Koronaentladung (Hochspannung) dürfen Sie mit diesem Gerät nicht arbeiten.
- Besondere Vorsicht ist geboten, wenn Sie in HF-Stromkreisen messen. Dort k\u00f6nnen gef\u00e4hrliche Mischspannungen vorhanden sein.
- Messungen bei feuchten Umgebungsbedingungen sind nicht zulässig.
- Achten Sie unbedingt darauf, dass Sie die Messbereiche nicht mehr als zulässig überlasten. Die Grenzwerte finden Sie im Kap. 9 "Technische Daten" in der Tabelle "Messfunktionen und Messbereiche" in der Spalte "Überlastbarkeit".
- Betreiben Sie das Multimeter nur mit eingelegten Batterien oder Akkus. Gefährliche Ströme oder Spannungen werden sonst nicht signalisiert und Ihr Gerät kann beschädigt werden.
- Das Gerät darf nicht mit entferntem Sicherungs- oder Batteriefachdeckel oder geöffnetem Gehäuse betrieben werden.
- Der Eingang der Strommessbereiche ist mit einer Schmelzsicherung ausgerüstet.
 Die maximal zulässige Spannung des Messstromkreises (= Nennspannung der Sicherung) beträgt 400 V.
 Achten Sie unbedingt darauf, dass Sie nur die vorgeschriebene Sicherung einsetzen, siehe Seite 73! Die Sicherung muss ein Mindestabschaltvermögen von 10 kA haben.

Spezielle Sicherheitshinweise für den Kalibrator

- Vergewissern Sie sich, wenn nötig mit dem Multimeterteil über das Fehlen von berührungsgefährlichen Spannungen in den Signalkreisen, an welche Sie das Gerät anschließen wollen.
- Beachten Sie zum Schutz des Geräts die an den Buchsen angegebenen maximal zulässigen Spannungen und Ströme. Mit Ausnahme des Widerstands-Simulations- und mA-SINK-Betriebes sollten die angeschlossenen Signalkreise keine Spannungen oder Ströme in den Kalibrator zurückspeisen. Zur Vermeidung von größeren Schäden im Gerät bei angelegter Fremdspannung (innerhalb der zulässigen Grenzwerte) ist der mA-SINK und mA-SOURCE-Kreis mit einer Sicherung ausgerüstet, die diesen Kreis beim Auftreten höherer Ströme im Störungsfall während der Dauer der Überlastung hochohmig macht.

Achtung!

Wird der Kalibrator verpolt angeschlossen, dann kann ein hoher Strom fließen, der die eingebaute Schmelzsicherung auslöst.

Hinweis Vor Anschluss des Prüflings zu beachten:

Schalten Sie das Gerät ein und stellen Sie die korrekte Kalibratorfunktion ein, bevor der Prüfling angeschlossen wird. Andernfalls kann beim Einschalten kurzzeitig ein hoher Strom über den Prüfling fließen und die Sicherungsüberprüfung gestört werden.

Öffnen des Gerätes / Reparatur

Das Gerät darf nur durch autorisierte Fachkräfte geöffnet werden, damit der einwandfreie und sichere Betrieb des Gerätes gewährleistet ist und die Garantie erhalten bleibt.

Auch Originalersatzteile dürfen nur durch autorisierte Fachkräfte eingebaut werden.

Falls feststellbar ist, dass das Gerät durch unautorisiertes Personal geöffnet wurde, werden keinerlei Gewährleistungsansprüche betreffend Personensicherheit, Messgenauigkeit, Konformität mit den geltenden Schutzmaßnahmen oder jegliche Folgeschäden durch den Hersteller gewährt.

Instandsetzung und Austausch von Teilen

Beim Öffnen des Gerätes können spannungsführende Teile freigelegt werden. Vor einer Instandsetzung oder einem Austausch von Teilen muss das Gerät vom Messkreis getrennt werden. Wenn danach eine Reparatur am geöffneten Gerät unter Spannung unvermeidlich ist, so darf dies nur durch eine Fachkraft geschehen, die mit den damit verbundenen Gefahren vertraut ist.

Fehler und außergewöhnliche Beanspruchungen

Wenn Sie annehmen müssen, dass das Gerät nicht mehr gefahrlos verwendet werden kann, dann müssen Sie es außer Betrieb setzen und gegen unabsichtlichen Einsatz sichern. Mit einer gefahrlosen Verwendung können Sie nicht mehr rechnen.

- wenn das Gerät sichtbare Beschädigungen aufweist,
- wenn das Gerät nicht mehr arbeitet oder Funktionsstörungen auftreten,
- nach längerer Lagerung unter ungünstigen Verhältnissen (z. B. Feuchtigkeit, Staub, Temperatur), siehe "Umgebungsbedingungen" auf Seite 73.

1.1 Bestimmungsgemäße Verwendung

- Das vorliegende Multimeter ist ein tragbares Gerät, das während der Messungen in der Hand gehalten werden kann.
- Mit dem Messgerät werden ausschließlich solche Messungen durchgeführt, wie im Kap. 5 beschrieben.
- Das Messgerät einschließlich der Messkabel und aufsteckbarer Prüfspitzen wird nur innerhalb der angegebenen Messkategorie eingesetzt, siehe Kap. 9 und zur Bedeutung die Tabelle auf Seite 8.
- Die Grenzen der Überlastbarkeit werden nicht überschritten. Überlastwerte und Überlastzeiten siehe Technische Daten in Kap. 9.
- Die Messungen werden nur innerhalb der angegebenen Umgebungsbedingungen durchgeführt. Arbeitstemperaturbereich und relative Luftfeuchte siehe Kap. 9.
- Das Messgerät wird nur entsprechend der angegebenen Schutzart (IP-Code) eingesetzt, siehe Kap. 9.

Warnung!

Das Gerät darf nicht in explosionsgefährdeten Zonen betrieben oder in eigensichere Stromkreise eingeschaltet werden.

1.2 Bedeutung der Gefahrensymbole

Warnung vor einer Gefahrenstelle (Achtung, Dokumentation beachten!)

1.3 Bedeutung akustischer Warnungen

 $\begin{tabular}{ll} \square & \square & Warnung vor gefährlicher Spannung am Messeingang: $U>33\ V\ AC\ oder\ U>70\ V\ DC\ (2-facher\ Signalton)$ \end{tabular}$

 $\begin{picture}(200,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){1$

()בערערע... Warnung vor hoher Spannung: > 310 V (Intervallton)

2 Bedienübersicht – Anschlüsse, Tasten, Drehschalter, Symbole

- 1 Anzeige (LCD), zur Bedeutung der Symbole siehe Seite 13
- 2 MAN / AUTO Umschalttaste für manuelle/automatische Messbereichswahl
 A Frhöhen von Parameterwerten

Betriebsart Menü: Auswahl einzelner Menüpunkte entgegen der Flussrichtung

- 3 **ON / OFF I LIGHT** Taste für Gerät EIN / AUS und Displaybeleuchtung ein/aus
- 4 OUT LENTER

OUT: Kalibratorausgang ein-/ausschalten Betriebsart Menü: Bestätigen der Eingabe (ENTER)

- 5 ▷ Messbereich erhöhen bzw. Dezimalpunkt nach rechts verschieben (Funktion MAN)
- 6 **Drehschalter** für Messfunktionen (weiß) und Kalibrierfunktionen (rot), zur Bedeutung der Symbole siehe Seite 14
- 7 DAkkS-Kalibriermarke
- 8 Anschlussbuchsen für Kalibrator-Ausgang
- 9 Anschlussbuchsen für Mess- und Sense-Eingang
- 10 DATA / MIN / MAX

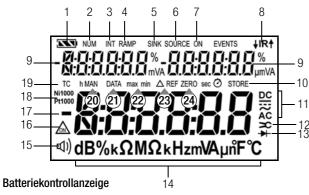
Taste für die Funktion Messwert halten, vergleichen, löschen und MIN/MAX ∇ Erniedrigen von Werten

Betriebsart Menü: Auswahl einzelner Menüpunkte in Flussrichtung

11 MEASURE / CAL | SETUP

Taste zum Umschalten zwischen Mess-, Kalibrier- und Menüfunktion

12 ZERO / SEL I ESC


Taste für die Nullpunkteinstellung und Auswahl von Doppelfunktionen Betriebsart Menü: Verlassen der Menüebene und

Rücksprung in eine höhere Ebene,

Verlassen der Parametereingabe ohne zu speichern Anhalten von Rampe/Intervall

- 13 < Messbereich verkleinern bzw. Dezimalpunkt nach links verschieben (Funktion MAN)
- 14 Anschluss für Netzadapter
- 15 Infrarot-Schnittstelle

Symbole der Digitalanzeige

ZZ

Batterie voll *

Batterie OK *

Batterie schwach

Batterie (fast) leer, U < 1,8 V

Schnittstellenkontrollanzeige (bei Drehschalterstellung ≠ 0FF)

↓IR↑ Datenübertragung ↓ zum / ↑ vom Kalibrator aktiv

IR-Schnittstelle im Stand-by-Betrieb aktiv (bereit zum Empfang von Einschaltbefehlen)

1 Batteriekontrollanzeige

2 NUM: numerische Eingabe des Ausgangssignals

3 INT: Intervallverlauf aktiv
4 RAMP: Rampenfunktion aktiv
5 SINK: Stromsenke aktiv
6 SOURCE: Stromguelle aktiv

7 ON: der Kalibratorausgang ist aktiv
 8 IR: Infrarot-Schnittstellenkontrollanzeige
 9 Nebenanzeige mit Komma- und Polaritätsanzeige

10 STORE: Speicherbetrieb aktiv

11 gewählte Stromart

12 Übertragungsfaktor (Zangenstromfaktor)

13 Diodenmessung gewählt

14 Messeinheit

15 🔘)) Durchgangsprüfung mit Signalton aktiv

17 Digitalanzeige mit Komma- und Polaritätsanzeige

18 RTD: gewähltes Nickel- oder Platinwiderstandsthermometer

19 TC: Temperaturmessung mit Thermoelement Fühlertyp B ... U

20 MAN: manuelle Messbereichsumschaltung aktiv

21 DATA: Anzeigespeicher, "Messwert halten"

22 max/min: MIN/MAX-Speicherung

23 Δ: Relativmessung bezogen auf eingestellten Offset

24 ZERO: Nullpunkteinstellung aktiv

^{*} Kalibrierfunktion: Stromsenke I_{Sink} möglich (U > 2,3 V)

Bedienübersicht – Anschlüsse, Tasten, Drehschalter, Symbole

Symbole der Drehschalterpositionen

Drehschalter	SEL	Anzeige	ZER0	Messfunktion – weiße Bedruckung
V 	_	mV, V DC	•	Gleichspannung
V~	0/2	mV, V ~ AC TRMS	•	Wechselspannung, echteffektiv AC, volle Bandbreite
Hz (V)	1	Hz, kHz ~ AC	_	Spannungsfrequenz, volle Bandbreite
Ω	0/2	Ω, $kΩ$, $ΜΩ$	•	(Gleichstrom-) Widerstand
Ω	1	□ ()) Ω	_	Durchgangsprüfung Ω mit Signalton
→	_	→ V DC	_	Diodenspannung
Temp TC	_	°C Typ-B U	_	Temperatur Thermoelement Typ K
Temp RTD	_	°C Pt100/1000 °C Ni100/1000	•	Temperatur mit Widerstandsthermometer
⊣⊢		nF μF	•	Kapazität
mA 	_	μA, mA DC	•	Gleichstromstärke
mA~	_	μA, mA ~ AC TRMS	•	Wechselstromstärke, echteffektiv AC

Drehschalter	SEL	Anzeige	Kalibrierfunktion – rote Bedruckung
٧	_	V DC	Gleichspannungsgeber
Hz _T_T_	_	Hz	Impuls-/Frequenzgenerator
Ω 0/2 Ω		(Gleichstrom-) Widerstandsgeber	
О Тур-Б О		Simulator von Thermoelementen	
		Simulator von Widerstandsthermometer	
mA — mA		Stromsenke	
mA	_	mA	Stromgeber

Symbole der Bedienerführung in den folgenden Kapiteln

▷ ... ▷ im Hauptmenü blättern

∇ ... ∇ im Untermenü blättern (scrollen)

Ь ПЕ Untermenü/Parameter (Sieben-Segment-Schrift)

Hauptmenü (Sieben-Segment-Schrift, Darstellung fett)

Symbole auf dem Gerät

Warnung vor einer Gefahrenstelle (Achtung, Dokumentation beachten!)

Erde

CAT II

Gerät der Messkategorie II, siehe auch "Messkategorien und ihre Bedeutung nach IEC 61010-1" auf Seite 8

Durchgängige doppelte oder verstärkte Isolierung

EG-Konformitätskennzeichnung

Lage der Infrarot-Schnittstelle, Fenster auf dem Gerätekopf

Lage der Netzteiladapterbuchse, siehe auch Kap. 3.1

Sicherung für die Strommessbereiche, siehe Kap. 10.3

Das Gerät darf nicht mit dem Hausmüll entsorgt werden. Weitere Informationen zur WEEE-Kennzeichnung finden Sie im Internet bei www.gossenmetrawatt.com unter dem Suchbegriff WEEE, siehe auch Kap. 10.5.

Kalibriermarke (blaues Siegel):

XY123	— Zählnummer
D-K-	— Deutsche Akkreditierungsstelle GmbH – Kalibrierlaboratorium
15080-01-01	— Registriernummer
2012-08	— Datum der Kalibrierung (Jahr – Monat)

siehe auch "Rekalibrierung" auf Seite 79

Inbetriebnahme

Batterien oder Akkus einsetzen

Beachten Sie zum richtigen Einsetzen der Batterien oder Akkus unbedingt das Kap. 10.2!

Die aktuelle Batteriespannung kann im Menü Info abgefragt werden, siehe Kap. 7.3.

Achtuna!

Trennen Sie das Gerät vom Messkreis, bevor Sie zum Batterieaustausch den Batteriefachdeckel öffnen!

Betrieb mit Netzteiladapter (Zubehör, nicht im Lieferumfang siehe Kap, 11.3)

Bei Stromversorgung durch den Netzteiladapter werden die eingesetzten Batterien elektronisch abgeschaltet, so dass diese im Gerät verbleiben können.

Werden Akkus verwendet, müssen diese extern geladen werden. Bei Ausschalten der externen Versorgung schaltet das Gerät unterbrechungsfrei auf Batteriebetrieb um.

3.2 Einschalten

Gerät manuell einschalten

Drücken Sie die Taste ON / OFF | LIGHT bis die Anzeige erscheint.

Das Einschalten wird durch einen kurzen Signalton guittiert. Solange Sie die Taste in gedrückter Stellung halten, werden alle Segmente der Flüssigkristallanzeige (LCD) dargestellt. Die LCD ist auf der Seite 13 abgebildet.

Nach dem Loslassen der Taste ist das Gerät mess- bzw. kalibrierbereit.

Anzeigenbeleuchtung

Bei eingeschaltetem Gerät können Sie durch kurzes Drücken der Taste **ON / OFF I LIGHT** die Hintergrundbeleuchtung aktivieren. Durch erneutes Drücken oder nach ca. 1 Minute automatisch wird diese wieder ausgeschaltet.

Gerät über PC einschalten

Nach Übertragung eines Datenblocks durch den PC schaltet sich das Multimeter ein, vorausgesetzt der Parameter ", -5Lb" ist auf ", ran " gesetzt (siehe Kap. 7.4).

Wir empfehlen iedoch den Stromsparmodus ", roFF".

Mary Hinweis

Elektrische Entladungen und Hochfrequenzstörungen können falsche Anzeigen verursachen und den Mess- bzw. Kalibrierablauf blockieren.

Trennen Sie das Gerät vom Messkreis. Schalten Sie das Gerät aus und wieder ein; dann ist es zurückgesetzt. Sollte der Versuch erfolglos sein, dann trennen Sie die Batterie kurzzeitig von den Anschlusskontakten, siehe auch Kap. 10.2.

3.3 Betriebsparameter setzen

Einstellen von Uhrzeit und Datum

Siehe Parameter "L, NE" und dALE" im Kap. 7.4.

3.4 Ausschalten

Gerät manuell ausschalten

Drücken Sie die Taste ON / OFF I LIGHT so lange, bis die Anzeige OFF erscheint.

Das Ausschalten wird durch einen kurzen Signalton quittiert.

Eine Komplettabschaltung aller Funktionen einschließlich der IR-Schnittstelle erreichen Sie über die Drehschalterstellung 0FF.

In der Kalibrierfunktion können Sie den Ausgang über die Taste **OUT I ENTER** separat ausschalten.

Das Ausschalten wird durch einen kurzen Signalton quittiert. Bei gefährlicher Spannung am Eingang wird das Ausschalten blockiert und ein Signalton ertönt. Das Gerät muss dann zuerst von den Messleitungen getrennt werden.

Automatische Abschaltung - DMM

Ihr Gerät schaltet sich automatisch aus, wenn der Messwert lange konstant ist (maximale Messwertschwankung ca. 0,8% vom Messbereich pro Minute bzw. 1 °C oder 1 °F pro Minute) und während einer Vorgabezeit in Minuten weder eine Taste noch der Drehschalter betätigt wurde (siehe Parameter "#PaFF " Seite 63). Das Ausschalten wird durch einen kurzen Signalton quittiert. Ausnahmen sind:

Sende- oder Speichermodus, Dauerbetrieb oder sofern eine gefährliche Spannung (U > 33 V AC oder U > 70 V DC) am Eingang anliegt.

Automatische Abschaltung - Kalibrator

Das Gerät schaltet nach der gewählten Zeit AP oFF(siehe "RP-FF" Seite 63.) automatisch den Ausgang ab. Das Display schaltet sich nach einer weiteren Minute ab, falls weder der Drehschalter noch eine Taste betätigt wurde.

Das Display kann ebenfalls über die Taste ON / OFF I LIGHT ausgeschaltet werden.

Ausgenommen von der automatischen Abschaltung der Ausgänge ist der Dauerbetrieb (AP oFF = on).

Verhindern der automatischen Abschaltung

Sie können Ihr Gerät auch "DAUERND EIN" schalten.

Drücken Sie dazu beim Einschalten gleichzeitig die Tasten

oder

⇒ Wählen Sie im Setup-Menü AP oFF = on, siehe "#P•FF " Seite 63.

Die Funktion "DAUERND EIN" wird auf der Anzeige mit dem Symbol 🛦 signalisiert.

Die Einstellung "DAUERND EIN" kann nur über Parameteränderung rückgängig gemacht werden, nicht über Ausschalten des Geräts, falls die automatische Abschaltung im Setup deaktiviert wurde, siehe "PPDFF" Seite 63.

4 Bedienfunktionen

4.1 Wählen der Messfunktionen und Messbereiche

Die gewünschte Messfunktion (weiße Symbole) wird über den Drehschalter ausgewählt. Doppelfunktionen wie Hz oder Durchgangsprüfung werden über die Taste **OUT I ENTER** angewählt.

4.1.1 Automatische Messbereichswahl

Das Multimeter hat eine Messbereichsautomatik für alle Messfunktionen, ausgenommen Temperaturmessung, Diodentest und Durchgangsprüfung. Die Automatik ist nach dem Einschalten des Gerätes in Funktion. Das Gerät wählt entsprechend der anliegenden Messgröße automatisch den Messbereich, der die beste Auflösung ermöglicht. Bei der Umschaltung auf Frequenzmessung bleibt der vorher eingestellte Spannungsmessbereich erhalten.

AUTO-Range Funktion

Das Multimeter schaltet automatisch in den nächst höheren Bereich bei $\pm(30999~D+1~D\rightarrow3~1000~D)$ und in den nächst niedrigen Bereich bei $\pm(2700~D-1~D\rightarrow2699~D)$.

Ausnahme Kapazitätsmessung:

Das Multimeter schaltet automatisch in den nächst höheren Bereich bei $\pm (3099 \text{ D} + 1 \text{ D} \rightarrow 3 \text{ 10 D})$ und in den nächst niedrigen Bereich bei $\pm (270 \text{ D} - 1 \text{ D} \rightarrow 2699 \text{ D})$.

4.1.2 Manuelle Messbereichswahl

Sie können die Messbereichsautomatik abschalten und die Bereiche entsprechend der folgenden Tabelle manuell wählen und fixieren, indem Sie die Taste MAN / AUTO drücken.

Anschließend können Sie den gewünschten Messbereich über die Cursortaste \lhd oder \rhd einstellen.

Sie kehren zur automatischen Bereichswahl zurück, wenn Sie die Taste MAN / AUTO drücken, wenn Sie den Drehschalter betätigen oder wenn Sie das Gerät aus- und wieder einschalten.

Übersicht Bereichsautomatik und manuelle Bereichswahl

	Funktion	Anzeige
MAN / AUTO	manueller Betrieb ein: verwendeter Messbereich wird fixiert	MAN
d oder ▷	Schaltfolge bei:	MAN
MAN / AUTO	Rückkehr zur automatischen Messbereichswahl	_

- * nur über manuelle Bereichswahl
- ** Bei der Nullpunkteinstellung wird der aktuelle Messwert als Referenzwert genommen und von den zukünftigen Messwerten abgezogen. Maximale Korrektur 50% vom Messbereich. Bei Änderung des Messbereichs über die Taste MAN bleibt die Funktion ZERO (in Anzeige und Speicher) erhalten.

Hinweis

Verwenden Sie bei hochohmigen Widerstandsmessungen (3 M Ω oder 30 M Ω -Bereich) kurze oder abgeschirmte Messleitungen.

4.1.3 Schnelle Messungen

Soll schneller gemessen werden, als dies bei der automatischen Messbereichswahl möglich ist, so muss der geeignete Messbereich fixiert werden. Eine schnelle Messung ist durch die folgenden zwei Funktionen gewährleistet:

 durch manuelle Messbereichswahl, d. h. durch Wahl des Messbereichs mit der besten Auflösung, siehe Kap. 4.1.2.

oder

über die Funktion DATA, siehe Kap. 4.4. Hier wird nach der ersten Messung automatisch der passende Messbereich fixiert, sodass ab dem zweiten Messwert schneller gemessen wird.

Bei beiden Funktionen bleibt der fixierte Messbereich für die darauf folgenden Serienmessungen eingestellt.

4.2 Nullpunktkorrektur/Relativmessungen

Je nach Abweichung vom Nullpunkt kann eine Nullpunkteinstellung oder ein Referenzwert für Relativmessungen abgespeichert werden:

	Abweichung vom Nullpunkt – bei kurzgeschlossenen Messleitungsenden für V, Ω , mA, RTD – bei offenem Eingang für Kapazitäten Einheit F	Anzeige
ı	0 200 Digit	∆ ZERO
ı	> 200 15000 Digit	Δ

Individuell für die jeweilige Messfunktion wird der betreffende Referenz- oder Korrekturwert als Offset von allen zukünftigen Messungen abgezogen und bleibt so lange gespeichert, bis er wieder gelöscht oder das Multimeter ausgeschaltet wird. Die Nullpunkt- oder Referenzwerteinstellung ist sowohl bei der automatischen Messbereichswahl als auch für den jeweils manuell gewählten Messbereich möglich.

Nullpunkt einstellen

- Schließen Sie die Messleitungen an das Gerät an und verbinden Sie die freien Enden, außer bei der Kapazitätsmessung, hier bleiben die Leitungsenden offen.
- □ Drücken Sie kurz die Taste ZERO / SEL I ESC. Das Gerät quittiert die Nullpunkteinstellung mit einem Signalton, auf der LCD wird das Symbol " ∆ ZERO" angezeigt. Der im Augenblick des Drückens gemessene Wert dient als Referenzwert.
- Die Nullpunkteinstellung k\u00f6nnen Sie l\u00f6schen, indem Sie erneut die Taste ZERO / SEL I ESC dr\u00fccken.

Hinweis

Bedingt durch die TRMS-Effektivwertmessung, zeigen das Multimeter bei kurzgeschlossenen Messleitungen im Nullpunkt der V AC/I AC-Messung einen Restwert von 1...30 Digit an (Unlinearität des TRMS-Wandlers). Dieser hat keinen Einfluss auf die spezifizierte Genauigkeit oberhalb 2% des Messbereiches (bzw. 3% in den mV-Bereichen).

Bedienfunktionen

4.3 Anzeige (LCD)

4.3.1 Messbereichsüberschreitung

Messwert, Messeinheit, Stromart, Polarität

Die Digitalanzeige zeigt den Messwert komma- und vorzeichenrichtig an. Dazu werden die gewählte Messeinheit und die Stromart eingeblendet. Bei der Messung von Gleichgrößen erscheint ein Minuszeichen vor den Ziffern, wenn der positive Pol der Messgröße am "L"-Eingang anliegt.

Messbereichsüberschreitung

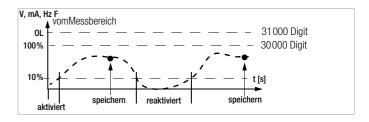
Bei Überschreiten des Messbereichsendwertes d. h. ab 31000 Digit wird "@L" (OverLoad) angezeigt.

Ausnahmen: bei der Kapazitäts- und Durchgangsmessung erfolgt die Anzeige "*BL*" ab 3100 Digit, bei der Diodenmessung ab 61000 Digit.

4.4 Messwertspeicherung "DATA" (Auto-Hold / Compare)

Mit der Funktion DATA (Auto-Hold) können Sie einen einzelnen Messwert automatisch "festhalten". Dies ist z. B. dann besonders nützlich, wenn das Abtasten der Messstelle mit den Prüfspitzen Ihre ganze Aufmerksamkeit erfordert. Nach dem Anliegen des Messsignals und der Stabilisierung des Messwertes entsprechend der "Bedingung" in der folgenden Tabelle hält das Gerät den Messwert in der Nebenanzeige oben links und die zugehörige Fixierzeit oben rechts fest und gibt ein akustisches Signal. Sie können nun die Prüfspitzen von der Messstelle abnehmen und den Messwert ablesen. Wenn das Messsignal dabei den in der Tabelle genannten Bereich verlässt, wird die Funktion für eine neue Speicherung reaktiviert (Segment **DATA** blinkt).

Messwertvergleich (DATA Compare)


Weicht der aktuelle, festgehaltene Wert vom ersten gespeicherten Wert um weniger als 100 Digit ab, dann ertönt das Signal zweimal. Ist die Abweichung größer 100 Digit ertönt nur ein kurzes Signal.

Beachten Sie jedoch, dass sich bei "festgehaltener" Digitalanzeige auch die Kommastelle nicht mehr ändert (Messbereich fixiert, Symbol MAN).

Solange die Funktion DATA aktiv ist, sollten Sie die Messbereiche nicht manuell verändern.

Die Funktion DATA wird ausgeschaltet, wenn Sie die Taste **DATA/ MIN/MAX** "lang" (ca. 1 s) drücken, wenn Sie die Messfunktion wechseln oder wenn Sie das Gerät aus- und wieder einschalten.

		Bedin	gung	Reaktion am Gerät		
Funktion DATA	Taste DATA/	Mess-	Messsig-	Nebena	Signal-	
	MIN/MAX	funktion	nal	oben links	oben rechts	ton
Aktivieren	kurz					1 x
Speichern (stabilisier-		V, A, F, Hz,	> 10 % v. MB	festgehal- tener MW	Fixierzeit wird an- gezeigt	
ter Mess- wert)		RTD TC Ω	≠OL	wird an- gezeigt		1 x
Reaktivieren		V, A, F, Hz,	< 10% v. MB	gespei- cherter		2 x ²⁾
1)		RTD TC Ω	= <i>0</i> L	MW		
Wechsel zu MIN/MAX	kurz	siehe Tabelle Kap. 4.4.1				
Verlassen	lang			wird gelöscht	wird gelöscht	2 x

¹⁾ Reaktivieren durch Unterschreiten der angegebenen Messwertgrenzen

Legende: MW = Messwert, v. MB = vom Messbereich

²⁾ Beim ersten Speichern eines Messwertes als Referenzwert 2x Signalton. Bei anschließendem Festhalten nur dann 2x, wenn der aktuelle, festgehaltene Wert vom ersten gespeicherten Wert um weniger als 100 Digit abweicht.

Beispiel

Der Spannungsmessbereich ist manuell auf 10 V eingestellt. Der erste Messwert ist 5 V und wird abgespeichert, da er größer als 10 % vom Messbereich. Sobald der Messwert unter 10 % vom Messbereich fällt, d. h. kleiner als 1 V ist, was ein Abnehmen der Prüfspitzen von der Messstelle entspricht, ist das Gerät für eine neue Speicherung bereit.

4.4.1 Minimalwert- und Maximalwertspeicherung "MIN/MAX"

Mit der Funktion MIN/MAX können Sie den minimalen und den maximalen Messwert "festhalten", der in der Zeit nach dem Aktivieren von MIN/MAX am Eingang des Messgerätes vorhanden war. Die wichtigste Anwendung ist die Ermittlung des Minimalund des Maximalwertes bei der Langzeitbeobachtung von Messgrößen.

Die Funktion MIN/MAX kann in allen Messfunktionen aktiviert werden.

Legen Sie die Messgröße an das Gerät an und fixieren Sie den Messbereich über die Taste MAN / AUTO bevor Sie die Funktion MIN/MAX aktivieren.

Die Funktion MIN/MAX wird ausgeschaltet, wenn Sie die Taste **DATA/MIN/MAX** "lang" (ca. 1 s) drücken, wenn Sie die Messfunktion wechseln oder wenn Sie das Gerät aus- und wieder einschalten.

Hinweis

Im Gegensatz zur Funktion DATA ist die Funktion MIN/MAX auch bei der Temperaturmessung anwendbar.

			Reaktion		
Funktion			Anzeig	Sig-	
MIN/MAX	MIN/MAX	Messwerte	Messwert digital	max min	nal- ton
1. Aktivieren und Spei- chern	1 x kurz	werden gespeichert	aktueller Messwert	min	1 x
2. Spei-	kurz	Speicherung läuft im Hinter- grund weiter, neue MIN- und	gesp. MIN- Wert	min	1 x
chern und Anzeigen	kurz	MAX-Werte werden zusammen mit Zeit des Auftretensangezeigt	gesp. MAX- Wert	max	1 x
Aufheben lang		werden gelöscht	aktueller Messwert	wird gelöscht	2 x

4.5 Messdatenaufzeichnung

Das Multimeter bietet die Möglichkeit, die Messdaten mit einstellbaren Abtastraten über längere Zeiträume als Messreihen aufzuzeichnen. Die Daten werden in einem batteriegepufferten Speicher abgelegt und bleiben auch nach Ausschalten des Multimeters erhalten. Das System erfasst die Messwerte dabei relativ zur Echtzeit.

Die gespeicherten Messwerte können über das PC-Programm METRAwin 10 ausgelesen werden. Voraussetzung ist ein PC, der über ein USB-Schnittstellenkabel mit dem bidirektionalen Schnittstellenadapter USB X-TRA, aufgesteckt auf das DMM, verbunden ist. Siehe auch Kap. 8.

Übersicht über die Speicherparameter

Parameter	Seite: Überschrift
cLEAr-	24: Speicher löschen
ENPLY	24: Speicher löschen – erscheint nach <i>cLEAr</i>
OccUP	24: Speicherbelegung abfragen
rALE	62: rAtE – Sende-/Speicherrate einstellen
SEArE	23: Starten der Aufzeichnung über Menüfunktionen
StoP	24: Aufzeichnung beenden

Menüfunktion STORE

- Stellen Sie erst die Abtastrate für den Speicherbetrieb ein (siehe Kap. 7.4 Parameter "rFILE") und starten Sie dann den Speicherbetrieb.
- Wählen Sie zunächst die gewünschte Messfunktion und einen sinnvollen Messbereich.
- Prüfen Sie vor längeren Messwertaufnahmen den Ladezustand der Batterien bzw. Akkus, siehe Kap. 7.3.
 Schließen Sie ggf. den Netzteiladapter an.

Starten der Aufzeichnung über Menüfunktionen

Wechseln Sie in die Betriebsart "5££" durch Drücken von MEAS / CAL I SETUP und wählen Sie dort das Hauptmenü "5£ar£ " aus.

- □ Durch Bestätigen mit OUT I ENTER wird der Speicherbetrieb gestartet. Das kleine Segment "STORE" wird eingeblendet und signalisiert, dass der Speicherbetrieb eingeschaltet ist. In der Digitalanzeige erscheint "Stor-E" und zeigt an, dass Sie sich noch in der Menüfuntkion befinden.
- Mit MEAS / CAL I SETUP kehren Sie zurück zur Messfunktion.

Bedienfunktionen

Während der Aufzeichnung

Um die Messwerte während der Speicherung beobachten zu können, wechseln Sie zur Messfunktion durch Betätigen von MEAS / CAL I SETUP. Durch erneutes Drücken von MEAS / CAL I SETUP gelangen Sie zurück zum Menü InFa, um dort die Speicherbelegung über den Parameter DauPP abzurufen zu können.

Sobald der Speicher voll ist, wird das Segment Store ausgeblendet.

Bei der Wahl einer anderen Messfunktion durch Betätigen des Drehschalters oder der Taste **OUT I ENTER** wird ein neuer Speicherblock angelegt. Die Speicherung läuft dann automatisch weiter.

Aufzeichnung beenden

- Mit MEAS / CAL I SETUP kehren Sie zurück zur Messfunktion.
- Alternativ wird der Speicherbetrieb durch Ausschalten des Multimeters beendet.

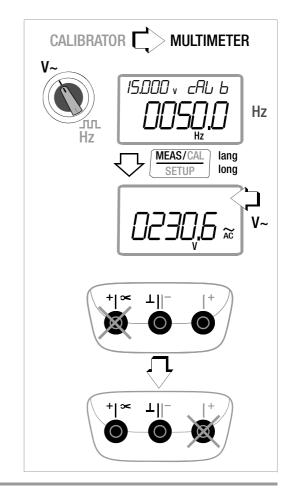
Speicherbelegung abfragen

Innerhalb des Menüs " Irfa" können Sie die Speicherbelegung auch während des Speichervorgangs abrufen, siehe auch Kap. 7.3

Bereich der Speicherbelegung: 000. 1 % ... 099.9 %.

Über das Menü " IrFa" können Sie die Speicherbelegung vor Beginn des Speichervorgangs abrufen.

$$\underbrace{ \frac{\text{MEAS / CAL}}{\text{SETUP}}} \quad \textit{InFo} \rhd ... \rhd \textit{SborE} \underbrace{ \frac{\text{OUT}}{\text{ENTER}}} \square \sqcap .4 \% \rhd \textit{SLArL}$$


Speicher löschen

Diese Funktion löscht alle gespeicherten Messwerte! Während des Speicherbetriebs kann diese Funktion nicht ausgeführt werden.

5 Messungen

5.1 Umschaltung von Kalibrierfunktion auf Messfunktion

Sofern eine Kalibrierfunktion aktiv ist, müssen Sie die Taste **MEA-SURE / CAL I SETUP** lange drücken, um in die Messfunktion zu wechseln.

5.2 Spannungsmessung

Hinweise zur Spannungsmessung

- Betreiben Sie das Multimeter nur mit eingelegten Batterien oder Akkus. Gefährliche Spannungen werden sonst nicht signalisiert und Ihr Gerät kann beschädigt werden.
- Das Multimeter darf nur von Personen bedient werden, die in der Lage sind, Berührungsgefahren zu erkennen und Sicherheitsvorkehrungen zu treffen. Berührungsgefahr besteht überall dort, wo Spannungen auftreten können, die größer sind als 33 V (Effektivwert).
 - Fassen Sie die Prüfspitzen beim Prüfen nur hinter dem Fingerschutz an. Berühren Sie keinesfalls die metallischen Prüfspitzen.
- Wenn Sie Messungen durchführen, bei denen Berührungsgefahr besteht, dann vermeiden Sie es, alleine zu arbeiten. Ziehen Sie eine zweite Person hinzu.
- Die maximal zulässige Spannung zwischen den Anschlüssen (9) bzw. (10) und Erde (8) beträgt 300 V in der Messkategorie II
- Rechnen Sie damit, dass an Messobjekten (z. B. an defekten Geräten) unvorhergesehene Spannungen auftreten können. Kondensatoren können z. B. gefährlich geladen sein.
- In Stromkreisen mit Koronaentladung (Hochspannung) dürfen Sie mit diesem Gerät keine Messungen durchführen.
- Besondere Vorsicht ist geboten, wenn Sie in HF-Stromkreisen messen. Dort k\u00f6nnen gef\u00e4hrliche Mischspannungen vorhanden sein.
- Achten Sie unbedingt darauf, dass Sie die Messbereiche nicht mehr als zulässig überlasten. Die Grenzwerte finden Sie im Kap. 9 "Technische Daten" in der Tabelle "Messfunktionen und Messbereiche" in der Spalte "Überlastbarkeit".

Funktionsumfang Spannungsmessung

Funktion	
V AC / Hz TRMS	•
V DC	•
Frequenzgang V AC	20 kHz

Funktionsumfang Strommessung über Zangenstromsensor

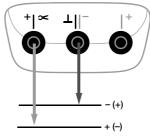
Funktion	
Übertragungsfaktor 🔀	
A AC >C / Hz	
A DC >C	
Hz (A AC)	10 kHz

5.2.1 Gleichspannungsmessung V DC

Hinweis

Stellen Sie im Setup-Menü Stromzange den Parameter cL, P auf DFF. Ansonsten werden sämtliche Messwerte in mA und korrigiert um das gewählte Übersetzungsverhältnis für einen angeschlossenen Zangenstromsensor angezeigt.

- Stellen Sie den Drehschalter entsprechend der zu messenden Spannung auf V
- Schließen Sie die Messleitungen wie abgebildet an. Die Anschlussbuchse "L" sollte dabei an möglichst erdnahem Potenzial liegen.


Im Bereich 300 V warnt Sie ein Intervallton, wenn der Messwert den Messbereichsendwert überschreitet.

Vergewissern Sie sich, dass kein Strommessbereich ("A") eingeschaltet ist, wenn Sie Ihr Multimeter zur Spannungsmessung anschließen! Werden die Abschaltgrenzwerte der Sicherungen bei Fehlbedienung überschritten, dann besteht Gefahr für Sie und Ihr Gerät!

Das Multimeter befindet sich nach dem Einschalten in der Schalterstellung V immer im Messbereich 3 V. Sobald die Taste MAN / AUTO gedrückt wird und der gemessene Wert < 310 mV ist, schaltet das Multimeter in den mV-Messbereich.

Messhereiche:

V = : 60 mV / 30 mV /3 V / 30 V / 300 V

Warnungen vor gefährlichen Spannungen:

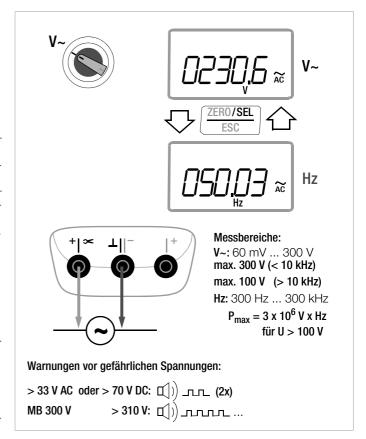
> 33 V AC oder > 70 V DC: (2x) MB 300 V

5.2.2 Wechselspannungs- und Frequenzmessung V AC und Hz

- Stellen Sie den Drehschalter entsprechend der zu messenden Spannung bzw. Frequenz auf V~.
- Schließen Sie die Messleitungen wie abgebildet an. Die Anschlussbuchse "L" sollte dabei an möglichst erdnahem Potenzial liegen.

Hinweis: Siehe Hinweis zum Parameter cl. P in Kap. 5.2.1.

Spannungsmessung


Im Bereich 300 V warnt Sie ein Intervallton, wenn der Messwert den Messbereichsendwert überschreitet.

Vergewissern Sie sich, dass kein Strommessbereich ("mA") eingeschaltet ist, wenn Sie Ihr Multimeter zur Spannungsmessung anschließen! Werden die Abschaltgrenzwerte der Sicherungen bei Fehlbedienung überschritten, dann besteht Gefahr für Sie und Ihr Gerät!

Drücken Sie sooft die Multifunktionstaste **OUT I ENTER**, bis die Einheit V in der Anzeige erscheint.

Frequenzmessung

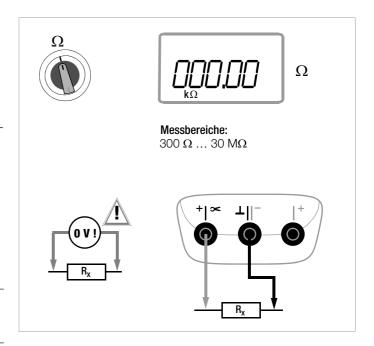
- ⇒ Legen Sie die Messgröße wie zur Spannungsmessung an.
- Wählen Sie manuell den Messbereich für die Spannungsamplitude aus. Bei der Umschaltung auf Frequenzmessung bleibt der vorher eingestellte Spannungsmessbereich erhalten.
- Drücken Sie sooft die Multifunktionstaste OUT I ENTER, bis die Einheit Hz in der Anzeige erscheint. Die niedrigsten messbaren Frequenzen und die maximal zulässigen Spannungen finden Sie im Kap. 9 "Technische Daten".

Spannungskomparator zur Anzeige gefährlicher Spannungen

Das Eingangsignal bzw. Messsignal wird von einem Spannungskomparator auf gefährliche Spitzen untersucht. Bei U > 33 V AC oder U > 70 V DC werden zwei Signaltöne ausgegeben.

5.3 Widerstandsmessung "Ω"

- Trennen Sie die Stromversorgung vom Stromkreis des zu messenden Geräts und entladen Sie alle Hochspannungskondensatoren.
- Überzeugen Sie sich, dass das Messobjekt spannungsfrei ist. Fremdspannungen verfälschen das Messergebnis!
 Prüfung die Spannungsfreiheit mithilfe der Gleichspannungsmessung, siehe Kap. 5.2.1.
- Stellen Sie den Drehschalter auf "Ω".
- Schließen Sie den Prüfling wie abgebildet an.



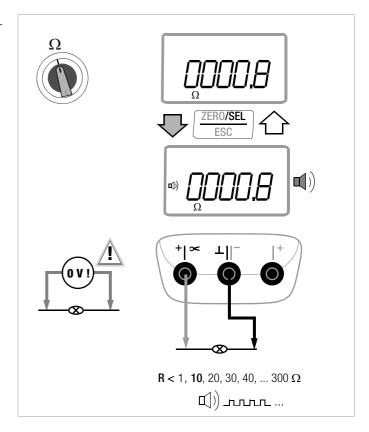
Verwenden Sie bei hochohmigen Widerständen kurze oder abgeschirmte Messleitungen.

Verbesserung der Genauigkeit durch Nullpunkteinstellung

In allen Messbereichen können Sie den Widerstand der Zuleitungen und Übergangswiderstände durch Nullpunkteinstellung eliminieren, siehe Kap. 4.2.

Maximale Korrektur 50 % vom Messbereich.

5.4 Durchgangsprüfung (1)


- Trennen Sie die Stromversorgung vom Stromkreis des zu messenden Geräts und entladen Sie alle Hochspannungskondensatoren.
- Überzeugen Sie sich, dass das Messobjekt spannungsfrei ist. Fremdspannungen verfälschen das Messergebnis!
- \Rightarrow Stellen Sie den Drehschalter auf Ω .
- Drücken Sie die Taste SEL.
- Schließen Sie die zu pr
 üfende Durchgangsstelle wie abgebildet an.

In Abhängigkeit vom eingestellten Grenzwert gibt das Multimeter bei Durchgang bzw. Kurzschluss, d. h. bei einem Wert kleiner als dem Grenzwert, einen Dauerton ab.

Bei offenen Anschlüssen wird "OL" eingeblendet.

Der Grenzwert kann im Menü "**5££**" eingestellt werden, siehe auch Kap. 7.4:

(10 = Standardwert/Werkseinstellung)

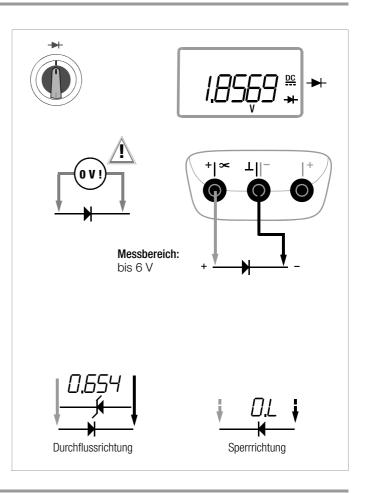
Diodenprüfung → mit Konstantstrom 1 mA

- Trennen Sie die Stromversorgung vom Stromkreis des zu messenden Geräts und entladen Sie alle Hochspannungskondensatoren.
- ⇒ Überzeugen Sie sich, dass das Messobjekt spannungsfrei ist. Fremdspannungen verfälschen das Messergebnis! Prüfung die Spannungsfreiheit mithilfe der Gleichspannungsmessung, siehe Kap. 5.2.1.
- ⇒ Stellen Sie den Drehschalter auf →
- Schließen Sie den Prüfling wie abgebildet an.

Achtuna!

Beachten Sie die Leerlaufspannung von 7 V bei der Diodenprüfung. Die Schaltkreise müssen hierfür ausgelegt sein.

Durchlassrichtung bzw. Kurzschluss


Das Messgerät zeigt die Durchlassspannung in Volt an (Anzeige: 4 Stellen). Solange der Spannungsabfall den max. Anzeigewert von 6 V nicht überschreitet, können Sie auch mehrere in Reihe geschaltete Elemente oder auch Referenzdioden mit kleiner Referenzspannung und Z-Dioden prüfen.

Sperrrichtung oder Unterbrechung

Das Messgerät zeigt Überlauf .al. an.

Parallel zur Diode liegende Widerstände und Halbleiterstrecken verfälschen das Messergebnis!

5.6 Temperaturmessung

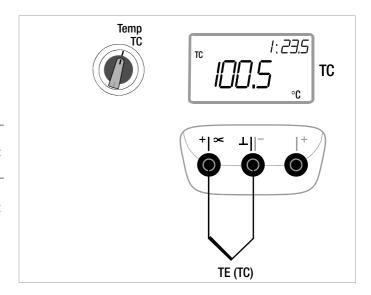
Die Temperaturmessung erfolgt über ein Thermoelement (Zubehör, kein Lieferumfang), das an den Spannungseingang angeschlossen wird. Alternativ kann ein Widerstandsthermometer angeschlossen werden.

Wahl der Temperatureinheit

(°C = Standardwert/Werkseinstellung)

5.6.1 Messung mit Thermoelementen Temp TC

Stellen Sie den Drehschalter auf "TempTC".


Der zuletzt eingestellte Temperatursensor bleibt gespeichert und wird entsprechend angezeigt.

Die Referenztemperatur wird über die interne Vergleichsstelle gemessen. Diese wird in der rechten Nebenanzeige dargestellt oder kann abgefragt werden (siehe Parameter " ILEMP" im Kap. 7.3).

Hinweis

Die interne Referenztemperatur (interne Vergleichsstellentemperatur) wird mit einem Temperaturfühler im Gerät gemessen. Durch interne Erwärmung oder durch Wechsel von warmer in kalte Umgebung kann diese etwas über der Raumtemperatur liegen.

Schließen Sie den Fühler an den beiden freigegebenen Buchsen an. Das Gerät zeigt die gemessene Temperatur in der gewählten Finheit an

5.6.2 Messung mit Widerstandsthermometern

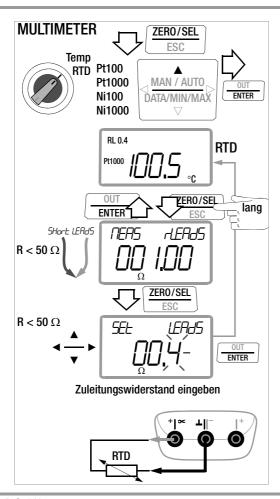
Stellen Sie den Drehschalter auf "Temp_{RTD}".

Der zuletzt eingestellte Typ des Widerstandsthermometers bleibt gespeichert und wird entsprechend angezeigt.

Es bestehen zwei Möglichkeiten, den Zuleitungswiderstand zu kompensieren:

Automatische Kompensation

⇒ Drücken Sie die Taste ZER0 / SEL I ESC lang. Die Aufforderung "Short leads" erscheint in der Anzeige.


Sofern Sie den Zuleitungswiderstand direkt eingeben wollen, können Sie den folgenden Absatz überspringen.

Schließen Sie die Anschlussleitungen des Messgeräts kurz. Die Anzeige *NERS -LERdS* wird eingeblendet. "*DDD.DD* " stellt sich ein. Mit Drücken der Taste **OUT I ENTER** erfolgt eine automatische Kompensation des Widerstands der Anschlussleitungen bei zukünftigen Messungen. Sie können jetzt den Kurzschluss entfernen, das Gerät ist messbereit.

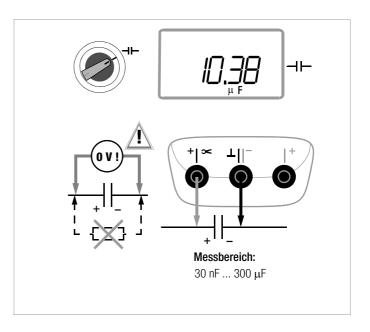
Zuleitungswiderstand eingeben

- Im Menü automatische Kompensation müssen Sie nochmals die Taste ZERO / SEL I ESC betätigen.
- - Über die Tasten $\lhd \rhd$ wählen Sie die Dekade, d. h. die Position der Ziffer, die Sie ändern wollen und über die Tasten $\nabla \triangle$ stellen Sie die jeweilige Ziffer ein. Der Defaultwert ist 0,43 Ω . Die Eingabegrenzen liegen zwischen 0 und 50 Ω .

Mit Drücken von OUT I ENTER wird der eingestellte Wert übernommen und Sie gelangen zurück zur Messung. Der Zuleitungswiderstand wird bei zukünftigen Messungen berücksichtigt und in der Messung oben links eingeblendet. Der Zuleitungswiderstand bleibt auch bei ausgeschaltetem Gerät gespeichert.

5.7 Kapazitätsmessung --

- Trennen Sie die Stromversorgung vom Stromkreis des zu messenden Geräts und entladen Sie alle Hochspannungskondensatoren.
- Überzeugen Sie sich, dass das Messobjekt spannungsfrei ist. Kondensatoren müssen zur Messung immer entladen sein. Fremdspannungen verfälschen das Messergebnis! Prüfung die Spannungsfreiheit mithilfe der Gleichspannungsmessung, siehe Kap. 5.2.1.
- Stellen Sie den Drehschalter auf "-- ".
- Schließen Sie den (entladenen!) Prüfling über Messleitungen an die Buchsen wie abgebildet an.



Polarisierte Kondensatoren sind mit dem "-" Pol an der Buchse "L" anzuschließen.

Parallel zum Kondensator liegende Widerstände und Halbleiterstrecken verfälschen das Messergebnis!

Verbesserung der Genauigkeit durch Nullpunkteinstellung

In allen Messbereichen können Sie die Kapazität der Zuleitungen durch Nullpunkteinstellung eliminieren, siehe Kap. 4.2. Maximale Korrektur: 50 % vom Messbereich.

5.8 Strommessung

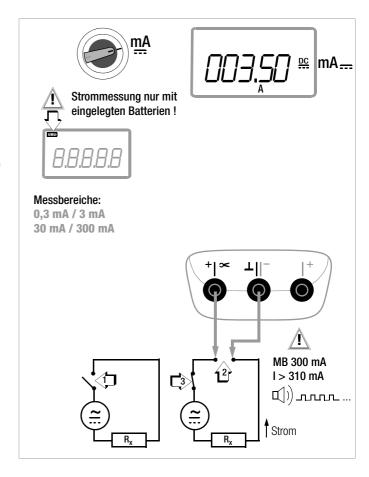
Hinweise zur Strommessung

- Betreiben Sie das Multimeter nur mit eingelegten Batterien oder Akkus. Gefährliche Ströme werden sonst nicht signalisiert und Ihr Gerät kann beschädigt werden.
- Bauen Sie den Messkreis mechanisch fest auf und sichern Sie ihn gegen zufälliges Öffnen. Legen Sie die Leiterquerschnitte und Verbindungsstellen so aus, dass sie sich nicht unzulässig erwärmen.
- Bei Strömen größer 310 mA im Bereich 300 mA warnt Sie ein Intervallton (250 ms ein, 250 ms aus).
- Der Eingang der Strommessbereiche ist mit einer Schmelzsicherung ausgerüstet. Die maximal zulässige Spannung des Messstromkreises (= Nennspannung der Sicherung) beträgt 400 V.

Achten Sie unbedingt darauf, dass Sie nur die vorgeschriebene Sicherung einsetzen! Die Sicherung muss ein **Mindestabschaltvermögen** von 10 kA haben.

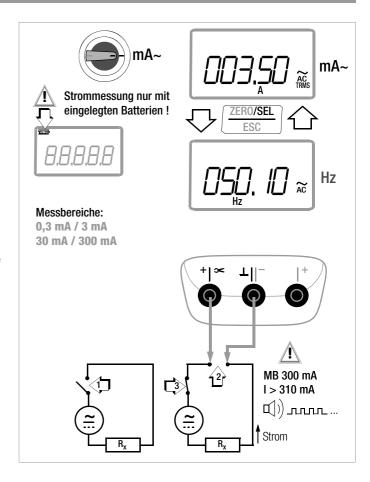
- Wenn im aktiven Strommessbereich die Sicherung defekt ist, wird "Fu5E" auf der Digitalanzeige eingeblendet, gleichzeitig ertönt ein Signalton im geschalteten Strommessbereich.
- Beseitigen Sie nach dem Ansprechen der Sicherung zuerst die Überlastursache bevor Sie das Gerät wieder betriebsbereit machen!
- Der Austausch der Sicherungen ist im Kap. 10.3 beschrieben.
- Achten Sie unbedingt darauf, dass Sie die Messbereiche nicht mehr als zulässig überlasten. Die Grenzwerte finden Sie im Kap. 9 "Technische Daten" in der Tabelle "Messfunktionen und Messbereiche" in der Spalte "Überlastbarkeit".

Funktionsumfang Strommessung direkt


Funktion	
mA AC / Hz ~	0,3 mA 3/30/300 mA
A DC	0,3 mA 3/30/300 mA
Sicherung 400 V	•

Funktionsumfang Strommessung über Zangenstromsensor

-	
Funktion	
Übertragungsfaktor 🔀	_
A AC >C / Hz	_
A AC+DC >C	_
A DC >C	_
Hz (A AC)	10 kHz


5.8.1 Gleichstrommessung direkt A DC

- Schalten Sie zuerst die Stromversorgung zum Messkreis bzw. zum Verbraucher ab (1) und entladen Sie, sofern vorhanden, alle Kondensatoren.
- Stellen Sie den Drehschalter auf mA ---
- Schließen Sie das Messgerät sicher (ohne Übergangswiderstand), wie abgebildet, in Reihe zum Verbraucher an (2).
- Schalten Sie die Stromversorgung des Schaltkreises wieder ein (3).
- Lesen Sie die Anzeige ab. Notieren Sie den Messwert, falls Sie nicht im Betriebsmodus Speichern oder Senden sind.
- Schalten Sie die Stromversorgung zum Messkreis bzw. zum Verbraucher wieder ab (1) und entladen Sie, sofern vorhanden, alle Kondensatoren.
- Entfernen Sie die Messspitzen von der Messstelle und stellen Sie den Normalzustand des Messkreises wieder her.

5.8.2 Wechselstrom- und Frequenzmessung direkt mA AC und Hz

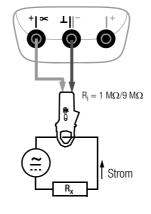
- Schalten Sie zuerst die Stromversorgung zum Messkreis bzw. zum Verbraucher ab (1) und entladen Sie, sofern vorhanden, alle Kondensatoren.
- Stellen Sie den Drehschalter entsprechend dem zu messenden Strom bzw. der zu messenden Frequenz auf A~ bzw. Hz.
- ➡ Wählen Sie die gewünschte Messgröße jeweils durch kurzes Drücken der Multifunktionstaste OUT I ENTER. Bei jedem Drücken der Taste wird abwechselnd zwischen AC_{TRMS} bzw. Hz umgeschaltet und die Umschaltung durch einen Signalton quittiert.
- Schließen Sie das Messgerät sicher (ohne Übergangswiderstand), wie abgebildet, in Reihe zum Verbraucher an.
- Schalten Sie die Stromversorgung des Schaltkreises wieder ein (3).
- Lesen Sie die Anzeige ab. Notieren Sie den Messwert, falls Sie nicht im Betriebsmodus Speichern oder Senden sind.
- Schalten Sie die Stromversorgung zum Messkreis bzw. zum Verbraucher wieder ab (1) und entladen Sie, sofern vorhanden, alle Kondensatoren.
- Entfernen Sie die Messspitzen von der Messstelle und stellen Sie den Normalzustand des Messkreises wieder her.

5.8.3 Gleichstrommessung mit Zangenstromsensor mA DC

Wandlerausgang Spannung/Strom

Bei Anschluss eines Zangenstromsensors an das Multimeter (Eingang \sim V/Eingang \sim mA) werden sämtliche Stromanzeigen entsprechend dem eingestellten Übertragungsfaktor mit dem richtigen Wert dargestellt. Voraussetzung hierfür ist, dass der Stromsensor mindestens einen der u. a. Übertragungsfaktoren hat und dies im folgenden Menü zuvor eingestellt wurde ($\text{d.i.P} \neq \text{DFF}$), siehe auch Kap. 7.4.

Einstellmenü Stromzange

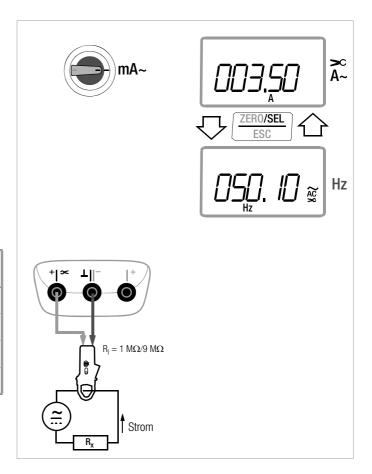


Übertragungs-	Messbereiche [Zangentypen		
faktoren L, P	300 mV	3 V	30 V	
1:1 1mV/1mA	300,00 mA	3,0000 A	30,000 A	WZ12C
1:10 1mV/10mA	3,0000 A	30,000 A	300,00 A	WZ12B, Z201A
1:100 1mV/100mA	30,000 A	300,00 A	3000,0 A	Z202A
1:1000 1 mV/1 A	300,00 A	3000,0 A	(3000,0 A)	Z202A, Z203A, WZ12C

Die maximal zulässige Betriebsspannung ist die Nennspannung des Stromwandlers. Berücksichtigen Sie beim Ablesen des Messwertes den zusätzlichen Fehler durch den Zangenstromsensor. (Werkseinstellung: **0FF**)

5.8.4 Wechselstrommessung mit Zangenstromsensor A AC und Hz

Wandlerausgang Spannung/Strom


Bei Anschluss eines Zangenstromsensors an das Multimeter (Eingang \sim V, Eingang \sim mA) werden sämtliche Stromanzeigen entsprechend dem eingestellten Übertragungsfaktor mit dem richtigen Wert dargestellt. Voraussetzung hierfür ist, dass der Stromsensor mindestens einen der u. a. Übertragungsfaktoren hat und dies im folgenden Menü zuvor eingestellt wurde (d. $P \neq DFP$), siehe auch Kap. 7.4.

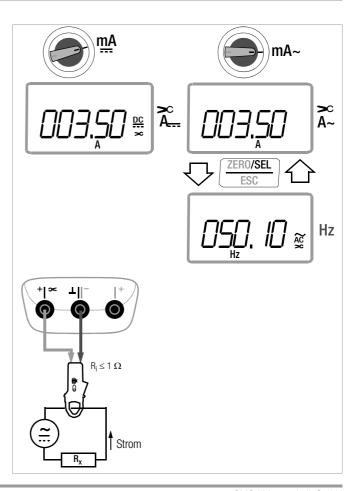
Einstellmenü Stromzange

Übertragungs-	Messbereiche [Zangentypen		
faktoren cL , P	300 mV	3 V	30 V	
1:1 1mV/1mA	300,00 mA	3,0000 A	30,000 A	WZ12C
1:10 1mV/10mA	3,0000 A	30,000 A	300,00 A	WZ12B, Z201A
1:100 1mV/100mA	30,000 A	300,00 A	3000,0 A	Z202A
1:1000 1 mV/1 A	300,00 A	3000,0 A	(30000,0 A)	Z202A, Z203A, WZ12C

Die maximal zulässige Betriebsspannung ist die Nennspannung des Stromwandlers. Berücksichtigen Sie beim Ablesen des Messwertes den zusätzlichen Fehler durch den Zangenstromsensor. (Werkseinstellung: **0FF**)

5.8.5 Gleich- und Wechselstrommessung mit Zangenstromwandler mA DC, mA AC und Hz

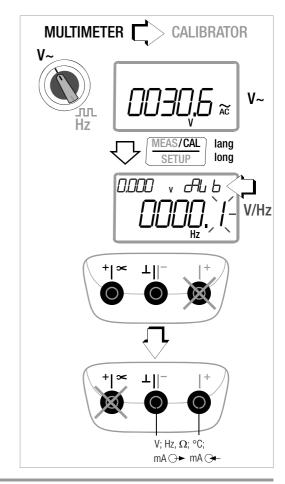
Wandlerausgang Strom/Strom


Bei Anschluss eines Zangenstromwandlers an das Multimeter (Eingang \propto mA) werden sämtliche Stromanzeigen entsprechend dem eingestellten Übertragungsfaktor mit dem richtigen Wert dargestellt. Voraussetzung hierfür ist, dass der Stromwandler mindestens einen der u. a. Übertragungsfaktoren hat und dies im folgenden Menü zuvor eingestellt wurde ($\mathbf{d} \cdot \mathbf{P} \neq \mathbf{DFF}$), siehe auch Kap. 7.4.

Einstellmenü Stromzange

Übertragungs-	Messbereiche [Zangentypen		
faktoren L, P	300 mA	3 A	30 A	
1:1 1mA/1mA	300,00 mA	3,0000 A	30,000 A	
1:10 1mA/10mA	3,0000 A	30,000 A	300,00 A	
1:100 1mA/100mA	30,000 A	300,00 A	3000,0 A	
1:1000 1 mA/1 A	300,00 A	3000,0 A	(30000,0 A)	WZ12A, WZ12D, WZ11A, Z3511, Z3512, Z3514

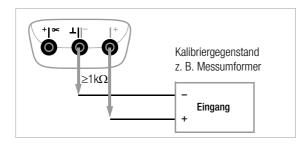
(Werkseinstellung: **0FF**)



6 Kalibrierfunktionen

6.1 Umschaltung von Messfunktion auf Kalibrierfunktion

Sofern eine Messfunktion aktiv ist, müssen Sie die Taste **MEASURE / CAL I SETUP** lange drücken, um in die Kalibrierfunktion zu wechseln.


Bei Umschaltung wird automatisch auf Standby gesschaltet.

6.2 Spannungsquelle [V]

Spannungen können innerhalb folgender Bereiche simuliert werden: 0 ... ± 60 mV, 0 ... ± 300 mV, 0 ... 3 V, 0 ... 10 V und 0 ... 15 V.

Der Widerstand des angeschlossenen Kreises sollte nicht kleiner als 1 k Ω sein.

- Wählen Sie mit dem Drehschalter die Kalibrierfunktion V.
- Schalten Sie gegebenenfalls den Kalibrator über die Taste 0N / 0FF I LIGHT ein.

Der zuletzt eingestellte Spannungsbereich wird eingeblendet.

- Schließen Sie den Kalibriergegenstand über die Messleitungen wie abgebildet an.
- Spannungswert einstellen:

ON signalisiert:

die Spannung wird direkt auf den Ausgang ausgegeben!

Über die Tasten $\triangleleft \triangleright$ wählen Sie die Dekade, d. h. die Position der Ziffer, die Sie ändern wollen und über die Tasten $\triangledown \triangle$ stellen Sie die jeweilige Ziffer ein.

Sie k\u00f6nnen den Ausgang \u00fcber die Taste \u00fcut I ENTER aktivieren oder wieder deaktivieren [5\u00e4\u00dcd\u00e4\u00e4].

Spannungsbereich für Festwertfunktion wählen

- Wechseln Sie über die Taste ZERO / SEL I ESC zum Menü [5ELEct R-DE].

Spannungsbereich für Intervall- oder Rampenfunktion wählen

- Wechseln Sie über die Taste ZER0 / SEL I ESC zum Menü [5ELEct. rAnūE]. Wählen Sie über die Tasten ∇ △ den gewünschten Spannungsbereich aus.
- ⇒ Wechseln Sie jetzt über die Tasten
 ⇒ zum Menü Intervalloder Rampenfunktion (siehe Kap. 6.7). Starten Sie die jeweilige Funktion mit OUT I ENTER.

Kurzdarstellung

Kalibrierfunktion wählen

ON/OFF LIGHT

Spannungsbereich wählen und für Festwertfunktion bestätigen

Festwert ändern

000.00 V \triangleleft \triangleright \triangle \triangledown

(negative Werte im Bereich von ±60 mV oder ±300 mV werden durch Scrollen mit ∇ unterhalb des Nullpunkts erreicht)

Ausgang aktivieren: $\frac{\text{OUT}}{\text{ENTER}}$

6.3 Impuls-, Frequenzgenerator (positiver Rechteckimpuls) [Hz]

Beim Frequenzgenerator können Spannung und Frequenz unabhängig voneinander eingestellt werden.

Das Ausgangssignal ist rechteckig. Der Widerstand des angeschlossenen Kreises sollte nicht kleiner als 1 kQ sein.

- JJJL/HZ.
- Schalten Sie den Kalibrator gegebenenfalls über die Taste ON / OFF I LIGHT ein.
- Schließen Sie den Kalibriergegenstand über die Messleitungen wie beim Spannungsgeber an.
- Spannungsbereich einstellen (300 mV, 3 V, 10 V oder 15 V): Wechseln Sie, indem Sie die Taste ZERO / SEL I ESC zweimal drücken zum Menü Spannungsbereich [5ELEct -A-GE]. Wählen Sie über die Tasten $\nabla \triangle$ den gewünschten Spannungsbereich aus. Bestätigen Sie diesen mit OUT I ENTER. Die Anzeige wechselt zur Eingabe der Spannungsamplitude.
- Spannungsamplitude einstellen (0 ... 15 V): Über die Tasten < > wählen Sie die Dekade, d. h. die Position der Ziffer, die Sie ändern wollen und über die Tasten $\nabla \triangle$ stellen Sie die ieweilige Ziffer ein. Bestätigen Sie abschließend mit OUT I ENTER. Die Anzeige wechselt zur Frequenzeingabe, wobei die Spannungsamplitude weiterhin in der Nebenanzeige eingeblendet wird.
- Frequenz einstellen (1 ... 2000 Hz): ON signalisiert: die Spannung wird direkt mit der gewählten Frequenz auf den Ausgang ausgegeben!

Über die Tasten < ▷ wählen Sie die Dekade, d. h. die Position der Ziffer, die Sie ändern wollen und über die Tasten $\nabla \triangle$ stellen Sie die jeweilige Ziffer ein.

Sie können den Ausgang über die Taste OUT | ENTER aktivieren oder wieder deaktivieren [5L-864].

Folgende Fehlermeldungen sind möglich:

"H. בשר" (High current – Strom an der Überlastgrenze) für I_{max} = 18 mA, "**BLD**" und 3 Signaltöne (Out Of Limit – Grenzwert überschritten) für I > 27 mA, der Geber schaltet ab.

Achtung!

An die Kalibratorbuchsen darf in dieser Betriebsart keine Fremdspannung angelegt werden.

Bei Bedienfehler des Anwenders gegen kurzzeitiges Anlegen einer größeren Fremdspannung ist der Kalibrator mit einer austauschbaren Sicherung geschützt, siehe Kap. 10.3.

Kurzdarstellung

Kalibrierfunktion wählen

ON/OFF LIGHT

Spannungsbereich einstellen (Ausgangspunkt Frequenzanzeige)

ZERO/SEL ESC

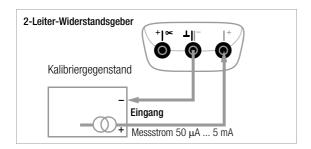
ZERO/SEL

SELECT -Ange 15 V ▽ ... ▽ 60 mV

Spannungsamplitude einstellen (Ausgangspunkt Freguenzanzeige)

 $000.00 \lor \lhd \rhd \triangle \nabla$

Frequenz einstellen


0000.0 Hz $\triangleleft \triangleright \triangle \triangledown$

Ausgang aktivieren:

OUT

6.4 Widerstandsgeber – Simulation $[\Omega]$

Der Widerstandsgeber kann Widerstände über 2-Leiter-Anschluss für folgenden Bereich simulieren: 5 ... 2000 Ω .

- Wählen Sie mit dem Drehschalter die Kalibrierfunktion Ω.
- Schalten Sie den Kalibrator über die Taste ON / OFF | LIGHT ein.
- Schließen Sie den Kalibriergegenstand über die Messleitungen wie abgebildet an.
- Sie k\u00f6nnen den Ausgang \u00fcber die Taste \u00fcut I ENTER aktivieren oder wieder deaktivieren [5tdb].

Umschalten zwischen Festwert-, Intervall- oder Rampenfunktion

- Wechseln Sie über die Taste ZER0 / SEL I ESC zum Menü [SELEct - rAnGE].
- ⇒ Wechseln Sie jetzt über die Tasten < > zum Menü Intervalloder Rampenfunktion. Starten Sie die jeweilige Funktion mit OUT I ENTER.

Kurzdarstellung

Kalibrierfunktion wählen

ON/OFF LIGHT

Festwert ändern $\Omega\Omega\Omega\Omega.\Omega\Omega \triangleleft \triangleright \triangle\nabla$

Ausgang aktivieren:

OUT ENTER

Hinweis

Folgende Fehlermeldungen sind möglich:

"High current – Strom zu hoch) für I > 4,5 mA und "Low" (Low current – Strom zu niedrig oder vertauschte Polarität) für $I < 40 \mu A$, dies entspricht offenen Buchsen.

An die Kalibratorbuchsen darf in dieser Betriebsart keine Fremdspannung angelegt werden.

Bei Bedienfehler des Anwenders gegen kurzzeitiges Anlegen einer größeren Fremdspannung ist der Kalibrator mit einer austauschbaren Sicherung geschützt, siehe Kap. 10.3.

Die Einstellzeit des Kalibratorausgangs auf den vorgegebenen Widerstandswert nach Anlegen des Messstroms beträgt max. 30 ms. Bei Prüflingen mit nicht kontinuierlichem Messstrom (z. B. gescannte Messeingänge) ergeben sich falsche Messwerte, wenn bereits während der Einstellzeit mit der Messung begonnen wurde. Für derartige Objekte ist der Kalibrator nicht einsetzbar.

6.5 Temperaturgeber – Temperatur-Simulation [°C/°F]

Der Temperaturgeber kann Widerstands-Temperaturfühler RTD oder Thermoelemente TC mit Vorgabe der externen Vergleichsstellentemperatur simulieren.

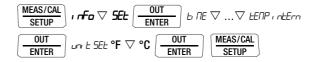
- Wählen Sie mit dem Drehschalter die Kalibrierfunktion Temp RTD oder Temp TC.
- Schalten Sie den Kalibrator gegebenenfalls über die Taste ON / OFF I LIGHT ein.
- Schließen Sie den Kalibriergegenstand über die Messleitungen an.

Der zuletzt eingestellte Temperatursensor wird eingeblendet.

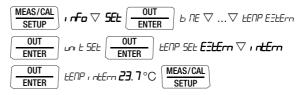
Der Geberwiderstand bzw. die Geberspannung wird direkt auf den Ausgang ausgegeben!

Über die Tasten $\triangleleft \triangleright$ wählen Sie die Dekade, d. h. die Position der Ziffer, die Sie ändern wollen und über die Tasten $\triangledown \triangle$ stellen Sie die jeweilige Ziffer ein. Alternativ können Sie an einer beliebigen Eingabeposition die Tasten $\triangledown \triangle$ so lange drücken, bis sich auch die höherwertigen Stellen mit ändern.

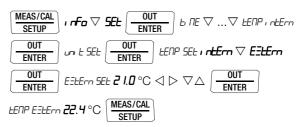
⇒ Sie k\u00f6nnen den Ausgang \u00fcber die Taste 0UT I ENTER aktivieren oder wieder deaktivieren [5tdbb].


Widerstandstemperaturfühler RTD oder Thermoelement TC wählen für Festwert-, Intervall- oder Rampenfunktion

- Wechseln Sie über die Taste ZERO / SEL I ESC zum Menü Festwert-, Intervall- oder Rampenfunktion.
- ⇒ Wählen Sie über die Tasten < > das Menü [5ELEct 5En5or].


Die Referenztemperatur wird in der Nebenanzeige angezeigt.

Parametereingaben für Temperatursimulation von Thermoelementen


Einheit °C oder °F wählen – Menü SEt

Referenztemperatur intern wählen – Menü SEt

Referenztemperatur extern wählen und einstellen - Menü SEt

6.5.1 Temperatursimulation von Widerstandstemperaturfühlern – Temp RTD-Stellung

Widerstandstemperaturfühler (Typ Pt100, Pt1000, Ni100 oder Ni1000) werden durch Widerstandswerte simuliert.

Kurzdarstellung

Kalibrierfunktion wählen

ON/OFF LIGHT

RIL

Sensortyp wählen und für Festwertfunktion bestätigen

SELECT SEPSON Pt 100 \vee ... \vee \sim 1000 $\frac{\text{OUT}}{\text{ENTER}}$

Temperaturgeberwert einstellen

 $PDD \circ C < D \land \nabla$

Ausgang aktivieren:

Die Einstellzeit des Kalibratorausgangs auf den vorgegebenen Widerstandswert nach Anlegen des Messstroms beträgt max. 30 ms.

Bei Prüflingen mit nicht kontinuierlichem Messstrom (z. B. gescannte Messeingänge) ergeben sich falsche Messwerte, wenn bereits während der Einstellzeit mit der Messung begonnen wurde. Für derartige Objekte ist der Kalibrator nicht einsetzbar.

6.5.2 Temperatursimulation von Thermoelementen – Temp TC-Stellung Thermoelemente (Typ B, E, J, K, L, N, R, S, T oder U) werden durch Spannung simuliert. Interne oder externe Temperaturkompensation ist möglich.

Kurzdarstellung

Kalibrierfunktion wählen

ON/OFF LIGHT

Sensortyp wählen und für Festwertfunktion bestätigen

$$\left[\frac{\mathsf{ZERO/SEL}}{\mathsf{ESC}} \right]$$
 SELEct SEnSon **b** $\nabla ... \nabla \boldsymbol{\upsilon} \left[\frac{\mathsf{OUT}}{\mathsf{ENTER}} \right]$

Temperaturgeberwert einstellen

120.0 °C < ▷ △▽

Ausgang aktivieren: OUT ENTER

Referenztemperatur intern oder extern wählen, externe Referenztemperatur einstellen siehe Seite 48

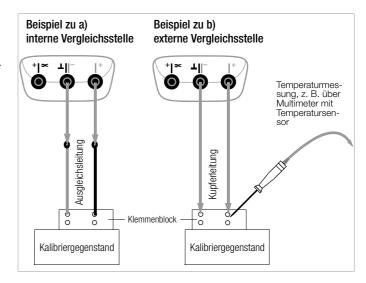
Funktionsbeschreibung, Anwendungen

Zur Auswahl stehen Ihnen 10 Thermoelementarten, die Sie über nach IEC/DIN spezifizierte Temperaturbereiche simulieren können. Sie haben dabei die Wahl, die intern gemessene Vergleichsstellen-Temperatur zu verwenden oder die Temperatur einer externen Vergleichsstelle –30 bis +60 °C numerisch einzugeben.

Wichtige Hinweise zur Referenztemperatur

Die interne Referenztemperatur wird laufend mit einem eingebauten Temperatursensor gemessen.

Bei Kalibriergegenständen mit Thermoelement-Messeingang wird die Referenz-Temperatur in der Regel am Anschluss für das Thermoelement gemessen.


Die beiden Messungen können verschieden sein und ihre Differenz geht bei der Simulation des Thermoelements voll als Fehler ein. Folgende Methoden helfen, diesen Fehler zu reduzieren:

- a) Die Verbindung vom Kalibriergegenstand an die Buchsen des Kalibrators erfolgt mit Ausgleichsleitung für das zu simulierende Thermoelement.
- b) Sie messen mit einem präzisen Temperatur-Messgerät die Temperatur am Thermoelement-Anschluss des Kalibriergegenstands und geben den Wert als externe Referenz-Temperatur in den Kalibrator ein. Die Verbindung zwischen Kalibrator und Kalibriergegenstand erfolgt durch Kupferleitungen.

Die Eingabe der externen Referenztemperatur ist in allen Fällen nützlich, wo die Temperaturmessung im Kalibriergegenstand über eine thermostatisierte Vergleichsstelle (Ende der Ausgleichsleitung des Thermoelements) erfolgt.

An die Kalibratorbuchsen darf in dieser Betriebsart keine Fremdspannung angelegt werden.

Bei Bedienfehler des Anwenders gegen kurzzeitiges Anlegen einer größeren Fremdspannung ist der Kalibrator mit einer austauschbaren Sicherung geschützt, siehe Kap. 10.3.

6.6 Stromquelle und Stromsenke [mA]

- ⇒ Wählen Sie mit dem Drehschalter die Kalibrierfunktion mA-Stromsenke (→) oder mA-Stromquelle (→).
- Schalten Sie den Kalibrator über die Taste **ON / OFF | LIGHT** ein. Der zuletzt eingestellte Strombereich wird eingeblendet.
- Schließen Sie den Kalibriergegenstand über die Messleitungen an, siehe Beispiel Kap. 6.6.1.
- Stromgeberwert einstellen:
 SINK ON signalisiert, dass die Stromsenke aktiv ist!
 SOURCE ON signalisiert, dass die Stromquelle aktiv ist!
 Über die Tasten ⊲ ▷ wählen Sie die Dekade, d. h. die Position der Ziffer, die Sie ändern wollen und über die Tasten ∇ △ stellen Sie die jeweilige Ziffer ein.
- Sie können die Stromsenke/Stromquelle über die Taste **OUT I ENTER** aktivieren oder wieder deaktivieren [SINK/SOURCE *5tabbl*] .

Strombereich für Festwertfunktion wählen

- Wechseln Sie über die Taste ZER0 / SEL I ESC zum Menü [SELEct - rAnGE].
- ⇒ Wählen Sie über die Tasten ∇ △ den gewünschten Strombereich (0 ... 20 mA, 4 ... 20 mA oder 0 ... 24 mA) aus. Bestätigen Sie diesen mit 0UT I ENTER. Die Anzeige wechselt zur Stromwerteingabe, wobei der gewählte Strombereich weiterhin in der Nebenanzeige eingeblendet wird.

Strombereich für Intervall- oder Rampenfunktion wählen

- Wechseln Sie über die Taste ZER0 / SEL I ESC zum Menü [5ELEct rAnGE] . Wählen Sie über die Tasten ∇ △ den gewünschten Strombereich aus.
- ➡ Wechseln Sie jetzt über die Tasten < ➡ zum Menü Intervalloder Rampenfunktion. Starten Sie die jeweilige Funktion mit 0UT | ENTER.

Kurzdarstellung

Kalibrierfunktion wählen

Strombereich wählen und für Festwertfunktion bestätigen

Festwert ändern

IS.00 mA $\triangleleft \triangleright \triangle \nabla$

Ausgang aktivieren: OUT ENTER

%-Ausgabe (Verhältnis Einstellwert zu Geberbereichsende)

Durch langes Drücken auf die Taste **OUT I ENTER** wechselt die Anzeige von mA in %.

6.6.1 Stromsenke – Simulation eines Zweileiter-Transmitters ←

Hier kann eine Stromsenke (0 ... 24 mA) bzw. die Last einer Stromschleife simuliert werden. Hierzu regelt der Kalibrator den Strom, der durch die Kalibratorbuchsen von einer externen Stromversorgung fließt, unabhängig von der an den Buchsen anliegenden Gleichspannung (4 ... 26 V). Der Kalibrator variiert den Innenwiderstand so, dass der eingestellte Strom fließt.

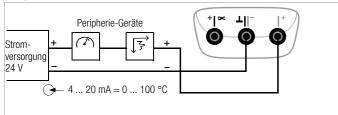
Hinweis

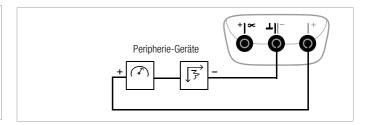
Der zuletzt eingestellte Geberbereich wird abgespeichert. Die Spannung an den Kalibratorbuchsen darf in der Betriebsart Stromsenke nicht größer 26 V sein, sonst führt dies zu einer thermischen Überlastung mit Ansprechen der Sicherung.

Bei zu geringer Spannung wird Laulde eingeblendet.

6.6.2 Stromquelle →

Zur Simulation einer Stromquelle wird die interne Stromversorgung verwendet.


₩ Hinweis


Der interne Regelkreis der Stromquelle wird überwacht: ist der Spannungsabfall an der externen Bürde > 20 V oder liegt eine Unterbrechung im Stromkreis vor, wird "Hi burd" eingeblendet.

An die Kalibratorbuchsen darf in dieser Betriebsart keine Fremdspannung angelegt werden.

Bei Bedienfehler des Anwenders gegen kurzzeitiges Anlegen einer größeren Fremdspannung ist der Kalibrator mit einer austauschbaren Sicherung geschützt, siehe Kap. 10.3.

Beispiel eines Zweileiter-Transmitter-Messkreises

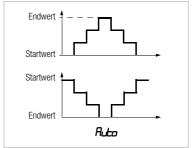
6.7 Intervall- und Rampenfunktionen

Um Sensorbedingungen am Eingang eines Umformers, Transmitters oder Trennverstärkers zu simulieren, können zwei Arten von Sollwertverläufen generiert werden:

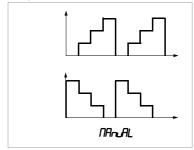
- Intervallverläufe (siehe Kap. 6.7.1) automatische (periodische) oder manuell gesteuerte Abläufe oder
- Rampenverläufe (siehe Kap. 6.7.2)
 Endlosschleifen (periodische) oder einmalige Abläufe.

Mithilfe der Software METRAwin [©]90-2 als Zubehör sind die oben genannten Verläufe bequem über einen PC generierbar.

6.7.1 Intervallverläufe – Funktion INT


In dieser Funktion werden Ausgabebereiche in ansteigende oder abfallende Intervallstufen aufgeteilt, wobei die Anzahl der Intervallschritte sowie deren Zeitdauer festgelegt werden kann. Diese Funktion eignet sich vor allem für die Kalibrierung von Analoganzeigen und Schreibern im Einmannbetrieb.

Eingabeparameter der Intervallabläufe:


- Als Ausgabegrößen sind alle Geberfunktionen außer Hz einstellbar.
- Je Ausgabegröße ist eine untere (54Ant) und eine obere (End) Bereichsgrenze innerhalb des Gesamtbereichs einstellbar.
- Die Anzahl der Schritte kann zwischen 1 ... 99,9 eingestellt werden. Es kann auch eine nicht ganzzahlige Anzahl von Stufen eingegeben werden, was besonders beim Anschluss von analogen Anzeigern und Schreibern mit nicht genormten Skalenendwerten praktisch ist.
- Die Intervallzeit pro Schritt (t1) ist w\u00e4hlbar von 1 Sekunde bis 60 Minuten.

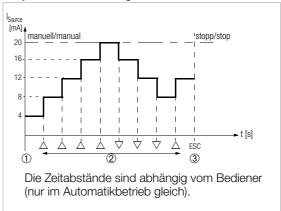
Die Stufensprünge können manuell (Int. NadE = NandL) über die Tasten △ ▽ oder automatisch (Int. NadE = Nata) mit wählbarer Zeit pro Stufe ausgelöst werden.

Beispiele für automatische Intervallverläufe

Beispiele für manuelle Intervallverläufe

Kalibrierfunktionen V – Hz $\neg \neg \square$ – Temp – mA \bigcirc – mA \bigcirc – mA

Intervallparameter einstellen


(Auto = automatischer Ablauf, MAnuAL = manueller Ablauf)

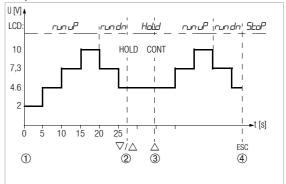
Manuell gesteuerter Intervallverlauf

Nach Eingabe aller Parameter für die Ausgabeart manueller Intervallverlauf ($Int \cap DodE = \mathbf{NFn-NL}$) und Start der Funktion mit $\underbrace{\mathbf{OUT}}_{\mathbf{ENTER}}$

werden die Stufenschritte mit den Tasten \triangle ∇ ausgelöst. Den Zusammenhang zwischen dem Ausgangssignal und der jeweiligen Tastenoperation ersehen Sie aus dem folgenden Beispiel.

Beispiel für einen manuell gesteuerten Intervallverlauf

Legende


- 1 Bei Anzeige von Int rERdy:
 Start des Ablaufs durch Drücken von OUT ENTER
- 2 Der Ablauf wird durch Druck auf die Taste △ **oder** ▽ in der entsprechenden Richtung fortgesetzt.
- 3 Stopp des Intervallverlaufs durch Drücken von ZERO/SEL FSC .

Automatischer Intervallverlauf

Das automatische Durchlaufen eines programmierten Bereichs ist vor allem dort sinnvoll, wo die Einspeisung in einen Signalkreis und die Ablesung der zu prüfenden Peripheriegeräte örtlich getrennt sind.

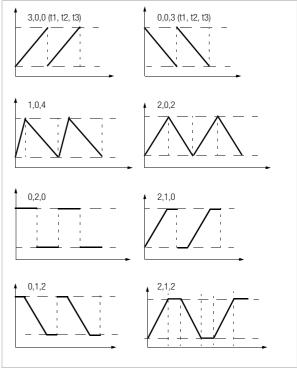
Nach Eingabe aller Parameter s. o. für die Ausgabeart "automatischer Intervallverlauf" (Int., \sqcap odE = \sqcap ot) kann der Ablauf gestartet und zu beliebigen Zeiten gestoppt und wieder fortgesetzt werden.

Beispiel für einen automatischen Intervallverlauf

Intervallparameter: Ausgabegröße: U (Bereich 0 ... 15 V), 5LR-L = 2 V, End = 10 V, Anzahl der Intervallschritte SLEP5 = 3, E1 = 5 s, R0dE = R0LE0

Legende

- 1 Bei Anzeige von Int rERdy:
 Start des Ablaufs durch Drücken von OUT ENTER
- 2 Der Ablauf wird durch Druck auf die Taste \triangle **oder** ∇ angehalten. Die bereits abgelaufene Intervallzeit wird als Wert t_x gespeichert.
- 3 Der Ablauf wird durch Druck auf die Taste \triangle fortgesetzt, wobei die Restlaufzeit $t_v = t1 t_x$.
- 4 Stopp des Intervallverlaufs durch Drücken von ESC.

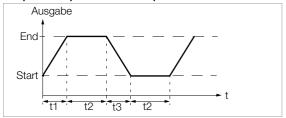

6.7.2 Ausgabe als periodische Rampe - Funktion RAMP

Rampenförmige Signale erlauben die Kontrolle des zeitdynamischen Verhaltens von Kalibriergegenständen oder ganzen Messkreisen. Ein Beispiel ist das Verhalten eines Regelkreises bei Vorgabe des Sollwerts über den analogen Sollwerteingang des Reglers. Das Gerät kann in dieser Ausgabeart auch aufwendigere Hard- und Software beim Aufbau von Dauertest-Einrichtungen mit zyklischen Zeitabläufen ersetzen.

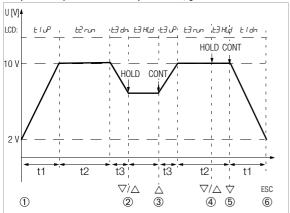
Eingabeparameter der unten abgebildeten Rampen:

- Als Ausgabegrößen sind folgende Funktionen einstellbar: Spannung U, Stromsenke I Sink, Stromquelle I Source, Widerstand R oder Temperatur temp (TC oder RTD).
- Je Ausgabegröße ist eine untere (5£A-L) und eine obere (£-a-d) Bereichsgrenze innerhalb des Gesamtbereichs einstellbar.
- Anstiegszeit t1 und Abfallzeit t3, ieweils wählbar von 0 Sekunden ... 60 Minuten
- Verweilzeit t2 an der oberen und unteren Bereichsgrenze, wählbar von 0 Sekunden ... 60 Minuten
- Es gibt 2 Rampenabläufe:
 - einmalig (ancE): t1, t2, t3
 - wiederholt (FEPERE): t1, t2, t3, t2, t1, t2, t3, ...

Beispiele für Rampenverläufe



Rampenparameter einstellen


MEAS/CAL ZERO/SEL **300** mV ... **15** ∨ ▽ ▷ **-ANP** SELECT -AnGE -ANP SEALE **02.000** V Startwert: 10.000 V Endwert: ranp end **ENTER** 00.05 min.s Anstiegszeit: -ANP L I ENTER -ANP E2 00.08 min.s Verweilzeit: ENTER Abfallzeit: 00.05 min.s rANP £3 ENTER Wiederholung: ranp node **repeat** abla and abla(rEPEAT = Endlosschleife, onCE = einmalig)

Den Zusammenhang zwischen dem Ausgangssignal und der jeweiligen Tastenoperation ersehen Sie aus dem folgenden Beispiel.

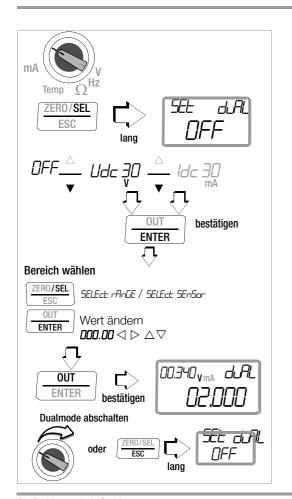
Beispiel eines periodischen Rampenablaufs

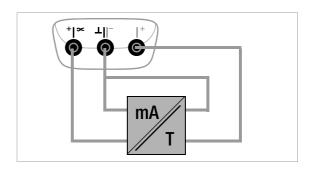
Beispiel eines periodischen Rampenablaufs, gesteuert durch manuelle Eingriffe

Rampenparameter: Ausgabegröße: U (Bereich 0 ... 15 V), $5 \pm Rr \pm 2$ V, Erd = 10 V, Erd = 10 V, Erd = 10 S, Erd = 10 S,

Legende

- 1 Bei Anzeige von ANP ERdy: Start des Ablaufs durch Drücken von OUT ENTER
- 2 Stopp der abfallenden Rampe innerhalb der Abfallzeit t3 mit den Tasten △ oder ▽.
- 3 Start einer Anstiegsrampe innerhalb der verbliebenen Abfallzeit t3 mit der Taste △.
- 4 Stopp des Rampenablaufs durch die Tasten \triangle oder ∇ .
- 5 Abstiegsrampe starten durch Taste ∇, der Rest der Verweilzeit t2 wird gelöscht.
- 6 Stopp des Rampenablaufs durch Drücken von ESC ESC


6.7.3 Dualmode (gleichzeitig geben und messen)


In der Betriebsart Dualmode, können alle Geberfunktionen aktiviert und gleichzeitig das Transmitterausgangssignal U oder I in den am häufigsten verwendeten Messbereichen (30 V DC oder 30 mA DC) gemessen werden.

Sonderfall: Spannung oder Strom geben und messen ohne externe Beschaltung. Soll z.B. die Spannungsausgabe kontrolliert werden, so brauchen Sie nur die beiden Buchsen Calibrator+ und Sense+ miteinander verbinden, da die Buchsen Calibrator- und Sense- bereits intern verbunden sind.

Dualmode aktivieren

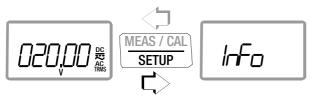
- Wählen Sie über den Funktionsdrehschalter eine Geberfunktion. Die Betriebsart Kalibrieren muss aktiviert sein, siehe Kap. 6.1.
- ⇒ Halten Sie die Taste ZERO / SEL I ESC ca. 2 s gedrückt und wählen über die Tasten △ ▽ die Messfunktion U_{de} oder I_{de}.
- Drücken Sie die Taste OUT I ENTER, um Ihre Auswahl zu bestätigen.
- Wählen Sie je nach Kalibrierfunktion den Geberbereich oder den Sensor über die Taste ZERO / SEL I ESC.
- $\, \stackrel{\smile}{\circ} \,$ Stellen Sie den Geberwert über die Tasten $\, \triangle \, \, \nabla$ in der Hauptanzeige ein.
- ⇒ Aktivieren Sie den Ausgang über die Taste OUT I ENTER. In der linken Nebenanzeige werden die zugehörigen Messwerte eingeblendet und rechts davon duffL
- Sie verlassen die Funktion "Dualmode" wieder, indem Sie den Drehschalter betätigen oder die Taste ZERO / SEL I ESC ca. 2 s halten, im Menü über die Tasten △ ▽ 0FF wählen und mit 0UT I ENTER bestätigen.

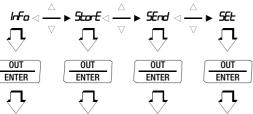
7 Geräte- und Messparameter

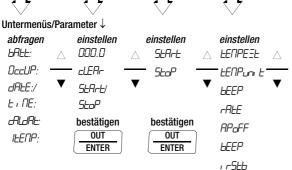
Die Betriebsart "**SEL**" (Menümodus) Ihres Gerätes ermöglicht die Einstellung von Betriebs- und Messparametern, den Abruf von Informationen sowie die Aktivierung der Schnittstelle.

- Sie gelangen in den Menümodus, indem Sie die Taste MEAS / CAL I SETUP drücken, sofern Ihr Gerät bereits eingeschaltet und in der Betriebsart "Messen" (Messmodus) ist. " Info " erscheint in der Anzeige.
- Durch wiederholtes Betätigen der Taste < ▷△▽ (in beliebiger Richtung) gelangen Sie zu den Hauptmenüs "SELLP", "LENP", "SEND" und "Storte" und wieder zurück nach "Info".
- ⇒ Sie gelangen nach Anwahl des gewünschten Hauptmenüs in das zugehörige Untermenü durch Betätigen von OUT I ENTER.
- ⇒ Durch wiederholtes Betätigen der Taste △∇ wählen Sie den gewünschten Parameter aus.
- Um den Parameter zu prüfen oder zu verändern bestätigen Sie diesen mit OUT | ENTER.
- ➡ Mit den Tasten ▷ gelangen Sie an die Eingabeposition. Mit den Tasten △▽ stellen Sie den Wert ein.
- Nur durch **OUT I ENTER** wird die Änderung übernommen.
- Mit ZERO / SEL I ESC gelangen Sie ohne Änderung zurück ins Untermenü, nach nochmaligem Drücken von ZERO / SEL I ESC ins Hauptmenü u.s.w.
- Sie erreichen den Messmodus aus jeder Menüebene, indem Sie die Taste OUT I ENTER drücken.

Nach wiederholtem Drücken von **MEAS / CAL I SETUP** (ohne das Multimeter zuvor auszuschalten) gelangen Sie aus dem Messmodus immer zurück zum zuletzt gewählten Menü oder Parameter.


Beispiel: Einstellen der Uhrzeit


Einstellen von Stunden und Minuten:


□ hiermit gelangen Sie zur gewünschten Eingabeposition.
 □ Ziffern einstellen, die Eingabeposition blinkt;
 zum schnellen Ändern der Ziffern: Taste gedrückt halten.
 nach Bestätigen der Eingabe wird die Uhrzeit übernommen.

Pfade zu den Parametern

Hauptmenüs \rightarrow

Addr

dRLE

ь пе

bestätigen

OUT

ENTER

7.2 Liste sämtlicher Parameter

7.2 Liste samuicher Farameter					
Parameter	Seite: Überschrift				
0.d; SP	62: 0.diSP – Führende Nullen ein-/ausblenden				
Addr	67: Schnittstellenparameter einstellen				
AP _o FF	63: APoFF – Vorgabezeit für automatische Abschaltung und dauernd EIN				
<i>bAEE</i>	62: bAtt – Batteriespannung abfragen				
ЬЕЕР	63: bEEP – Grenzwert der Durchgangsprüfung einstellen				
cALdAL	62: cALdAt – Kalibrierdatum und Firmwareversion abfragen				
cLEAr	23: Messdatenaufzeichnung				
сь Р	Gleichstrommessung mit Zangenstromsensor mA DC Wechselstrommessung mit Zangenstromsensor A AC und Hz Gleich- und Wechselstrommessung mit Zangenstromwandler mA DC, mA AC und Hz				
dALE	62: Datum und Uhrzeit abfragen, 64: dAtE – Datum eingeben				
ENPLY	23: Messdatenaufzeichnung				
InFo	62: Parameterabfragen – Menü InFo (als Laufschrift)				
ı rSEb	67: Schnittstellenparameter einstellen				
ILENP	62: ItEMP – Referenztemperatur abfragen				
OccUP	23: Messdatenaufzeichnung				
rALE	62: rAtE – Sende-/Speicherrate einstellen				
5End	66: Schnittstelle aktivieren				
SEŁ .	62: Parametereingaben – Menü SETUP				
SEALE					
StoP	23: Messdatenaufzeichnung				
5torE					
<i>ÆNP</i>	33: Temperaturmessung				
E , NE	62: Datum und Uhrzeit abfragen, 64: tiME – <i>Uhrzeit einstellen</i>				

Geräte- und Messparameter

7.3 Parameterabfragen – Menü InFo (als Laufschrift)

bAtt - Batteriespannung abfragen

MEAS / CAL SETUP INFO OUT ENTER BALL: 3. / V.

OCCUP – Speicherbelegung abfragen

MEAS / CAL SETUP INFO OUT BNTER BALL: V ... V DCCUP: 000.0 %

Datum und Uhrzeit abfragen

MEAS / CAL SETUP INFO OUT BALL: V ... V 3 I. I2.2009 (TT.MM.JJJJ)

Ε · ΠΕ: 13:46:56 (hh:mm:ss)

T = Tag, M = Monat, J = Jahr; h = Stunde, m = Minute, s = Sekunde Datum und Uhrzeit müssen nach einem Batteriewechsel erneut eingegeben werden.

cALdAt - Kalibrierdatum und Firmwareversion abfragen

MEAS / CAL SETUP InFo OUT BALE: ♥ cALdAL: 06.07.09 UE-2.00

ItEMP - Referenztemperatur abfragen

Die Referenztemperatur der internen Vergleichsstelle wird mit einem Temperaturfühler in der Nähe der Eingangsbuchsen gemessen.

MEAS / CAL SETUP INFO OUT BATER BALL: V ... V ILEAP: 24 °C

7.4 Parametereingaben – Menü SETUP

rAtE - Sende-/Speicherrate einstellen

Die Abtastrate bestimmt das zeitliche Intervall, nach dessen Ablauf der jeweilige Messwert zur Schnittstelle oder zum Messwertspeicher übertragen wird.

Folgende Abtastraten können eingestellt werden: [mm:ss.z] 00:00.1, 00:00.2, **00:00.5**, 00:01.0, 00:02.0, 00:05.0 [h:mm:ss.z] (h=Stunden, m=Minuten, s=Sekunden, z=Zehntelsek.) 0:00:10, 0:00:20, 0:00:30, 0:00:40, 0:00:50, 0:01:00, 0:02:00, 0:05:00, 0:10:00, 0:20:00, 0:30:00, 0:40:00, 0:50:00, 1:00:00, 2:00:00, 3:00:00, 4:00:00, 5:00:00, 6:00:00, 7:00:00, 8:00:00, 9:00:00

<u>Einstellen</u> der Abtastrate

(00:00.5 = 0.5 s = Standardwert/Werkseinstellung)

0.diSP - Führende Nullen ein-/ausblenden

Hier kann eingestellt werden, ob bei der Messwertanzeige führende Nullen ein- oder ausgeblendet werden sollen.

DDDD.D: mit führenden Nullen (Standardwert/Werkseinstellung) **DD**: führende Nullen ausgeblendet

APoFF – Vorgabezeit für automatische Abschaltung und dauernd EIN DMM

Ihr Gerät schaltet sich automatisch aus, wenn der Messwert lange konstant ist und während der Vorgabezeit "FP-FF" in Minuten weder eine Taste noch der Drehschalter betätigt wurde.

Kalibrator

Ihr Gerät schaltet zuerst den Ausgang automatisch aus, wenn der während der Vorgabezeit "FPoFF" in Minuten weder eine Taste noch der Drehschalter betätigt wurde. Nach einer weiteren Minute wird auch das Display abgeschaltet.

APoFF einstellen

Sofern Sie die Einstellung on wählen, wird das Multimeter auf dauernd EIN gestellt, in der Anzeige erscheint on rechts vom Batteriesymbol. Das Multimeter kann jetzt nur manuell ausgeschaltet werden. Die Einstellung "on" kann nur über Parameteränderung rückgängig gemacht werden, nicht über Ausschalten des Geräts.

(10 min = Standardwert/Werkseinstellung)

bEEP – Grenzwert der Durchgangsprüfung einstellen

$$\begin{array}{c|c} \underline{\text{MEAS / CAL}} & \textit{InFo} \rhd ... \rhd \textit{SEL} \\ \hline \underline{\text{SETUP}} & \textit{InFo} \rhd ... \rhd \textit{SEL} \\ \hline \underline{\text{OUT}} & \textit{I, ID, 20, 30, 40} ... & \textit{300} \ \Omega \ \triangle \nabla \\ \hline \underline{\text{ENTER}} & \textit{I, ID, 20, 30, 40} ... & \textit{300} \ \Omega \ \triangle \nabla \\ \hline \end{array}$$

(10 Ω = Standardwert/Werkseinstellung)

irStb – Zustand des Infrarot-Empfängers im Stand-By-Betrieb

Einstellen siehe Kap. 8.2 auf Seite 67.

Addr - Geräteadressen einstellen

Siehe Kap. 8.2 auf Seite 67.

Geräte- und Messparameter

tiME - Uhrzeit einstellen

Die aktuelle Uhrzeit ermöglicht die Messwerterfassung im Echtzeitbetrieb.

Datum und Uhrzeit müssen nach einem Batteriewechsel erneut eingegeben werden.

dAtE - Datum eingeben

Das aktuelle Datum ermöglicht die Messwerterfassung im Echtzeitbetrieb.

Datum und Uhrzeit müssen nach einem Batteriewechsel erneut eingegeben werden.

7.5 Standardeinstellungen (Werkseinstellungen, Defaulteinstellungen)

Sie können Ihre bisher vorgenommenen Änderungen rückgängig machen und die Standardeinstellungen (Werkseinstellungen) wieder aktivieren. Dies kann in folgenden Fällen sinnvoll sein:

- nach Auftreten von Software- oder Hardwareproblemen
- wenn Sie den Eindruck haben, das Multimeter arbeitet falsch
- Trennen Sie das Gerät vom Messkreis.
- ⇒ Klemmen Sie die Batterien kurzzeitig ab, siehe auch Kap. 10.2.
- \Rightarrow Betätigen Sie die zwei Tasten $\underbrace{\frac{\text{ZER0 / SEL}}{\text{ESC}}}_{\text{Und}}$ und $\underbrace{\frac{\text{ON / OFF}}{\text{LIGHT}}}$

gleichzeitig, halten diese gedrückt und schließen gleichzeitig die Batterien an.

8 Schnittstellenbetrieb

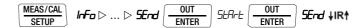
Das METRACAL MC ist zur Kommunikation mit dem PC mit einer Infrarot-Schnittstelle ausgerüstet. Die Befehle werden optisch mit Infrarotlicht durch das Gehäuse auf einen Schnittstellen-Adapter (Zubehör USB X-TRA) übertragen, der auf das METRACAL MC aufgesteckt wird. Die USB-Schnittstelle dieses Adapters ermöglicht die Verbindung zum PC über ein Schnittstellenkabel.

Es können Befehle und Parameter vom PC zum **METRACAL MC** übertragen werden. Hierzu gehören:

DMM

- Einstellen und Auslesen der Messparameter,
- · Auswählen von Messfunktion und -bereich,
- Starten der Messung,
- Auslesen der gespeicherten Messwerte.

Kalibrator


- Einstellen und Auslesen der Kalibrierparameter,
- Auswählen von Kalibrierfunktion und -bereich,
- Starten der Kalibrierung,
- Einprogrammieren von kundenspezifischen Prozeduren (Intervall- oder Rampenfunktionen).

8.1 Schnittstelle aktivieren

Das Aktivieren der Schnittstelle für den Empfangsbetrieb (METRACAL MC empfängt Daten vom PC) erfolgt automatisch durch Ansprechen vom PC aus, vorausgesetzt der Parameter "Ir-5Lb" steht auf "on", siehe Kap. 8.2 oder das Gerät ist bereits eingeschaltet (der erste Befehl weckt das METRACAL MC, führt aber noch keinen weiteren Befehl aus).

Die Betriebsart "Dauernd senden" wird manuell eingeschaltet wie folgt beschrieben. In dieser Betriebsart überträgt das Gerät ständig die Messdaten über den angeschlossenen Schnittstellenadapter zum PC und können mit einem Terminalprogramm dargestellt werden.

Starten des Dauersendebetriebs über Menüfunktionen

Der Schnittstellenbetrieb wird auf der Anzeige durch Blinken des Symbols JR† signalisiert.

Stoppen des Dauersendebetriebs über Menüfunktionen

Das Symbol **↓IR**↑ erlischt.

Automatische An- und Abschaltung im Sendebetrieb

Sofern die Übertragungsrate 10 s oder länger ist, schaltet sich die Anzeige zwischen zwei Abtastungen automatisch ab, um die Batterie zu schonen. Einzige Ausnahme ist der Dauerbetrieb. Bei Auftreten eines Ereignisses schaltet sich die Anzeige automatisch wieder ein.

8.2 Schnittstellenparameter einstellen

I-5±6 – Zustand des Infrarot-Empfängers im Stand-By-Betrieb

Zwei Schaltzustände der Infrarot-Schnittstelle sind bei ausgeschaltetem Multimeter möglich:

IR wird im Display eingeblendet, die Infrarot-Schnittstelle ist aktiv, d. h. Signale wie z. B. Einschaltbefehle

können empfangen werden, Strom wird auch im abgeschalteten Zustand des Multimeters verbraucht.

roFF: IR wird im Display nicht eingeblendet,

die Infrarot-Schnittstelle ist abgeschaltet, es können keine Signale empfangen werden.

$$\begin{array}{c|c} \underline{\text{MEAS/CAL}} & \textit{InFo} \rhd ... \rhd \textit{SEL} & \underline{\text{OUT}} \\ \underline{\text{ENTER}} & \textit{InFo} \rhd ... \rhd \textit{SEL} \\ \underline{\text{OUT}} & \text{Info} \rhd ... \rhd \text{SEL} \\ \underline{\text{ENTER}} & \text{OUT} \\ \underline{\text{ENTER}} & \text{Info} \rhd ... \rhd \text{SEL} \\ \underline{\text{OUT}} & \text{ENTER} \\ \end{array}$$

(, r5tb = , roFF = Standardwert/Werkseinstellung)

Add- - Adresse

Werden mehrere Multimeter über Schnittstellenadapter an den PC angeschlossen, so kann jedem Gerät eine eigene Adresse zugewiesen werden. Für das erste Gerät sollte die Adresse 1 eingestellt werden, für das zweite Gerät die Adresse 2 usw.

(15 = Standardwert/Werkseinstellung)

9 Technische Daten

Kalibratorteil

Kalibratorteli							
Kalibrier- funktion	Geberbereich Auflösung 30000 Digit (4%-stellig)			Eigen- unsicherheit	Überlast		
Gleichspannungsquelle		Minimaler Lastwiderstand	±(% v.S + mV)	I _{max}			
	0±60mV	1 μV		0,1 + 0,01			
	0±300mV	0,01 mV		0,05 + 0,02			
٧	0 3 V	0,1 mV	1 kΩ	0,05 + 0,2	18 mA		
	010 V	1 mV		0,05 + 2			
	015 V	1 mV		0,05 + 2			
Tastve (Puls-	s-/Frequenzger rhältnis Pausenverhältnis tude: 10 mV 1): 50%,	Minimaler Lastwiderstand	±(% v.S + Hz)	I _{max}		
Hz	1 Hz2 kHz	0,11 Hz	1 kΩ	0,05 + 0,2	18 mA		
Stron	nquelle		max. Bürde	±(% v. S + μA)			
mA	4 20 mA 0 20 mA 0 24 mA	1 μΑ	16 V	0,05 + 2			
Stron	senke			\pm (% v. S + μ A)	U _{max}		
	4 20 mA						
mA	0 20 mA	1 μΑ	V _{in} = 4 26 V	0,05 + 2	26 V		
	0 24 mA						
Wide	standsgeber		Fühlerstrom [mA]	\pm (% v. S + Ω)	I _{max}		
Ω	52000Ω	0,1 Ω	0,05 <u>0,14</u> 5	0,05 + 0,2	5 mA		

¹⁾ Die Einstellung von Frequenzen ab 29 Hz kann nur in einem begrenzten Raster erfolgen.

Simulator von Temperatursensoren (Auflösung 0,1 K)

	Sensortyp	Geberbereich in °C	Geberbereich in °F	Eigen- unsicherheit	Überlast
	Widerstandsthern	±(%v. S + K)	I _{max}		
	Pt100	-200+850	-328+1562	0,1 + 0,5	5 mA
	Pt1000	-200+300	-328+572	0,1 + 0,2	SIIIA
	Widerstandsthern	nometer gemäß [DIN 43760	±(%v. S + K)	I _{max}
	Ni100	−60+180	−76+356	0,1 + 0,5	5 mA
	Ni1000	−60+180	−76 …+356	0,1 + 0,2	SIIIA
	RTD-Fühlerstrom 0	,05 <u>0.1 4</u>	5 mA		
ر / °F	Thermoelemente	gemäß DIN bzw.	IEC 584-1	ΔU in mV ²⁾	I _{max}
ပွဲ	K (NiCr/Ni)	− 250…+1372	-418+2501		
	J (Fe/CuNi)	-210+1200	-346+2192		
	T (Cu/CuNi)	− 270…+400	-454+ 752		
	B (Pt30Rh/Pt6Rh)	+500+1820	+932+3308	±(0,05%	
	E (NiCr/CuNi)	<i>−</i> 270…+1000	-454+1832	v. Setting	18 mA
	R (Pt13Rh/Pt)	− 50+1768	-58+3214	+	10 IIIA
	N (NiCrSi-NiSi)	-270+1300	-454+2372	0,02)	
	S (Pt10Rh/Pt)	-50+1768	-58+3214		
	L (Fe/CuNi)	-200+900	-328+1652		
	U (Cu/CuNi)	-200+600	-328+1112		

²⁾ ohne interne Vergleichsstelle;

bezogen auf feste externe Referenztemperatur und Thermospannung des Elements Vergleichsstelle intern: Eigenabweichung 2 K, Vergleichsstelle extern: Eingabe –30 ... 60 °C

Legende

S = Set = Einstellwert

Multimeterteil

Mess-	Messbereich	bereichs	bei Mess- sendwert	Eingangs	impedanz		r höchsten Auflösung bedingungen	Überlas	stbarkeit 3)
funktion	WCSSDCTCTCTT	30000 ¹⁾ (60000)	3100 ¹⁾	DC	40	±(% v. MW. + D)	±(% v. MW. + D) AC ^{2) 10)}	Mont	7-:4
	22 1/4)	<u> </u>	3100 "		AC		AU 5/ 10/	Wert	Zeit
-	60 mV ⁴⁾	1 μV		>20 MΩ		0,1 + 10 5)	— — — — — — — — — — — — — — — — — — —	300 V	
,,	300 mV	10 μV		>20 MΩ	5 MΩ // < 50 pF	0,08 + 10 ⁵⁾	0,5 + 30 (> 500D)	DC	alassa and al
V	3 V	100 μV		11 MΩ	5 MΩ // < 50 pF	0,05 + 10	0,2 + 30 (> 100D)	AC	dauernd
	30 V	1 mV		10 MΩ	5 MΩ // < 50 pF	0,05 + 10	0,2 + 30 (> 100D)	eff	
	300 V	10 mV		10 MΩ	5 MΩ // < 50 pF	0,05 + 10	0,2 + 30 (> 100D)	Sinus	
					. bei Endwert MB.		0) 10)		
				DC	AC	DC	AC ^{2) 10)}		
	0,3 mA	10 nA		160 mV	160 mV	0,1 + 15	0,8 + 30 (> 100D)		
mA	3 mA	100 nA		160 mV	160 mV	0,05 + 15	0,5 + 30 (> 100D)	0.36 A	dauernd
IIIA	30 mA	1 μΑ		180 mV	180 mV	0,05 + 15	0,5 + 30 (> 100D)	0,30 A	uauemu
	300 mA	10 μΑ		380 mV	380 mV	0,05 + 15	0,5 + 30 (> 100D)		
				Leerlaufspannung	Messstrom bei Endwert MB.	±(% v. N	1W. + D)		
	300 Ω	10 mΩ		0,6 V	2 50 μΑ	0,1 + 5 ⁵⁾			
	3 kΩ	0,1 Ω		0,6 V	150 μΑ	0,1 + 5 ⁵⁾		300 V	
Ω	30 kΩ	1 Ω		0,6 V	30 μΑ	0,1 + 5		DC	E min
22	300 kΩ	10 Ω		0,6 V	3 μΑ	0,2 + 5		AC	5 min
	3 ΜΩ	100 Ω		0,6 V	360 nA	0,5 + 10 ¹⁰⁾		eff	
	30 MΩ	1 Ω		0,6 V	100 nA	2 + 10 ¹⁰⁾		Sinus	
Ω \square	300 Ω		0,1 Ω	3, V	1 mA	2 + 5			max. 10 s
→+	6 V	1 mV		7 V	ca. 1 mA	0,5 + 3		300 V	max. 10 s
				Entladewiderstand	U _{0 max}	±(% v. MW. + D)			
	30 nF		10 pF	1 MΩ	3 V	1 + 10 5) 10)		300 V	
	300 nF		100 pF	100 kΩ	3 V	1 + 6 ^{5) 10)}		DC	
F	3 μF		1 nF	1 kΩ	3 V	1 + 6 ¹⁰⁾		AC	5 min
	30 μF		10 nF	1 kΩ	3 V	1 + 6 ¹⁰⁾		eff	
	300 μF		100 nF	3 kΩ	3 V	5 + 6 ¹⁰⁾		Sinus	

Anzeige: 3¾ Stellen für Kapazitätsmessung; für die Speicherung und Übertragung von Messwerten ist eine andere Auflösung und Abtastrate einstellbar im Menü rAtE
 20 ... 45 ... 65 Hz ... 1 kHz Sinus, für Wechselspannung TRMS_{AC}, Messwerte < 100 Digit werden unterdrückt, Einflüsse siehe Seite 71

³⁾ bei 0 ° ... + 40 °C

⁴⁾ nur manuell einstellbar

⁵⁾ bei Funktion "Nullpunkteinstellung" aktiv, Anzeige ZERO maximale Korrektur 50 % v.MW.

Mess- funktion	Messbereich	Auflösung bei Mess- bereichsendwert		Eingangsimpedanz	Eigenunsicherheit der höchsten Auflösung bei Referenzbedingungen	Überlast Wert	barkeit ³⁾ Zeit
		30000 (60000) ¹⁾	3100 ¹⁾	f _{min} ⁶⁾	±(% v. MW. + D)		
Hz	300 Hz 3 kHz	0,01 Hz 0,1 Hz		1 Hz	0.05 + 5 7) 10)	300 V 300 V	dauernd
"2	30 kHz 300 kHz	1 Hz 10 Hz		10 Hz	0,00 + 0 / /	200 V 20 V	uauemu

Mess- funk-	Temperatur-	emperatur- Messbereich :		Eigenunsicherheit der höchsten Auflösung	Über bark	
tion	sensor		Auflösung	bei Referenzbedingungen ±(% v. MW. + D) ⁸⁾	Wert	Zeit
	Pt 100	−200,0 −100,0 °C				
		−100,0 +100,0 °C				
		+100,0 +850,0 °C				
	Pt 1000	−200,0 +100,0 °C		0,3 + 10		
		+100,0 +850,0 °C				
	Ni 100	-60,0 +180,0 °C			300V DC eff Sinus	
	Ni 1000	−60,0 +180,0 °C				
	K (NiCr-Ni)	-250,0 +1372,0 °C				
°C/°F	J (Fe-CuNi)	-210,0 +1200,0 °C	0,1 K			5 min
	T (Cu-CuNi)	−270,0 +400,0 °C	0			111111
	B (Pt30Rh/Pt6Rh)	+500,0 +1820,0 °C				
	E (NiCr/CuNi)	−270,0 +1000,0 °C		0,2 + 10 ⁹⁾		
	R (Pt13Rh/Pt)	−50,0 +1768,0 °C		0,2 + 10 "		
	N (NiCrSi-NiSi)	−270,0 +1300,0 °C				
	S (Pt10Rh/Pt)	−50,0 +1768,0 °C				
	L (Fe/CuNi)	−200,0 +900,0 °C				
$oxed{oxed}$	U (Cu/CuNi)	−200,0 +600,0 °C				

¹⁾ Anzeige: 3¾ Stellen für Kapazitätsmessung; für die Speicherung und Übertragung von Messwerten ist eine andere Auflösung und Abtastrate einstellbar im Menü rAtE

3) bei 0 ° ... + 40 °C

7) Bereich 300 mV~: $U_E \ge 40$ % vom Messbereichsendwert 3/30/300 V~: $U_E \ge 10$ % vom Messbereichsendwert 8) zuzüglich Fühlerabweichung

9) ohne eingebaute Referenzstelle; mit interner Referenztemperatur zusätzlicher Fehler ±2 K

10) Grenzen gelten nur für Batteriebetrieb

Legende

D = Digit MB = Messbereich MW = Messwert

⁶⁾ niedrigste messbare Frequenz bei sinusförmigem Messsignal symmetrisch zum Nullpunkt

Einflussgrößen und Einflusseffekte

Einflussgröße	Einfluss- bereich	Messgröße/ Messbereich ¹⁾	Einflusseffekt ± (% v. MW. + D)/10 K		
		V DC, °C (TC)	0,1 + 10		
		V AC	0,5 + 10		
		3/30 mA DC	0,1 + 10		
		3/30 mA AC	0,5 + 10		
		300 mA DC, AC	0,5 + 10		
		$300\Omega/3/30/300~\text{k}\Omega~\text{2L}$	0,2 + 10		
	0 +21 °C	3 MΩ 2L	0,5 + 10		
Temperatur	und	$30~\text{M}\Omega~\text{2L}$	1 + 10		
Temperatur	unu	30/300 nF/3/30/300 μF	0,5 + 10		
	+25+40 °C	Hz	0,1 + 10		
		°C (RTD)	0,2 + 10		
		Gebergröße			
				mV/V, °C (TC)	0,1 + 10
		Ω, °C (RTD)	0,2 + 10		
		mA Source	0,1 + 10		
		mA Sink	0,1 + 10		

¹⁾ Mit Nullpunkteinstellung

Einflussgröße	Frequenz	Messgröße/ Messbereich	Einflusseffekt ²⁾ ± (% v. MW. + D)	
Frequenz V _{AC}	> 20 Hz 45 Hz	300,00 mV	2 + 30	
	> 65 Hz 1 kHz	•••	2 + 30	
	> 1 kHz 20 kHz	300,0 V	3 + 30	

Einflussgröße	Frequenz	Messgröße/ Messbereich	Einflusseffekt ²⁾ ±(% v. MW. + D)
	> 20 Hz 45 Hz	0,3 mA	2 + 30
Frequenz I _{AC}	> 65 Hz 10 kHz	3 mA 30 mA 300 mA	3 + 30

Einflussgröße	Einflussbereich		Messgröße/ Messbereich	Einflusseffekt ²⁾
	_	1 2	V AC, A AC	±1 % v. MW.
	Crest- faktor CF	2 4		±5 % v. MW.
		4 5		±7 % v. MW.
Kurvenform der Messgröße		4 - 3 -		

Einflussgröße	Einflussbereich	Messgröße/ Messbereich	Einflusseffekt
	75 %		
Relative Luftfeuchte	3 Tage	V, A, Ω F, Hz °C	1 x Eigenunsicherheit
	Gerät aus		

²⁾ Fehlerangaben gelten ab einer Anzeige von 10% des Messbereichs

Einflussgröße	Einflussbereich	Mess- bereich	Dämpfung ±dB
	Störgröße max. 250 V \sim	V 	> 90 dB
Gleichtakt- störspannung	Störgröße max. 250 V ∼ 50 Hz, 60 Hz Sinus	300 mV 30 V ∼	> 80 dB
	30 Hz, 60 Hz Silius	300 V ∼	> 70 dB
Störgröße V \sim , jeweils Nennwert des Messbereiches, störspannung max. 250 V \sim , 50 Hz, 60 Hz S		V 	> 60 dB
	Störgröße max. 250 V —	V ~	> 60 dB

Echtzeituhr

Auflösung 0,1 s

Genauigkeit ±1 min/Monat Temperatureinfluss 50 ppm/K

Referenzbedingungen

Umgebungs-

temperatur $+23 \text{ °C} \pm 2 \text{ K}$ Relative Feuchte $40 \dots 60 \text{ %}$

Frequenz der

Messgröße 45 ... 65 Hz

Kurvenform der

Messgröße Sinus, Abweichung zwischen Effektiv- und

Gleichrichtwert < 0,1%

Batteriespannung 3,0 V ±0,1 V

Einstellzeit (Multimeterfunktionen)

Einstellzeit (nach manueller Bereichswahl)

Messgröße/ Messbereich	Einstellzeit der Digitalanzeige	Sprungfunktion der Messgröße	
V DC, V AC A DC, A AC	1,5 s	von 0 auf 80% des Messbereichsendwertes	
300 Ω 3 MΩ	2 s		
30 MΩ	5 s	(500)	
Durchgang	< 50 ms	von ∞ auf 50% des Messbereichsendwertes	
> +	1,5 s		
°C Pt100	max. 3 s	•	
3 nF 30 μF	max. 2 s	von 0 auf 50%	
>10 Hz	max. 1,5 s	des Messbereichsendwertes	

Anzeige

LCD-Anzeigefeld (65 mm x 35 mm) mit Anzeige von maximal 3 Messwerten, Messeinheit, Stromart und verschiedenen Sonderfunktionen.

Anzeige / Ziffernhöhe 7-Segment-Ziffern

Hauptanzeige: 12 mm Nebenanzeigen: 7 mm

Stellenzahl 4¾-stellig

⇒ 30999 Schritten

Überlaufanzeige "OL" bzw. "–OL"wird angezeigt

Polaritätsanzeige "–" Vorzeichen wird angezeigt.

wenn Pluspol an "⊥"

LCD-Test nach Einschalten des Geräts werden alle

im Betrieb des **METRACAL MC** ansteuerba-

ren Segmente aktiviert

Stromversorgung

Batterie 2 x 1,5 V Mignonzelle

Alkali-Mangan-Zellen nach IEC LR6

oder entsprechender Akku

Betriebsdauer mit Alkali-Mangan-Zellen (2600 mAh)

Messfunktion	Strom	Betriebsdauer
V, Hz, mA, Ω ₂ , F, °C	31 mA	70 h
Standby (MEM + Uhr)	350 μΑ	ca. 1 Jahr
Kalibrierfunktion		Betriebsdauer
mV, Thermoelement	80 mA	25 h
15 V	200 mA	10 h
Ω , RTD	130 mA	15 h
Senke 20 mA (25 V)	300 mA	5 h
Quelle 20 mA für Bürde < 5V	230 mA	10 h

Bei Unterschreitung von 1,8 V schaltet

sich das Gerät automatisch ab.

Batterietest Anzeige der Batteriekapazität über 4-seg-

mentiges Batteriesymbol "".

Abfrage der aktuellen Batteriespannung

über Menüfunktion.

Versorgung über Netz mit Netzadapter NA X-TRA

Stromsparschaltung

Das Gerät schaltet sich automatisch ab, wenn der Messwert lange konstant ist und während einer einstellbaren Vorgabezeit in Minuten kein Bedienelement betätigt wurde. Beim Geber wird zuerst der Ausgang abgeschaltet und nach einer weiteren Minute das Display, falls kein Bedienelement betätigt wurde.

(AP OFF = ON)

Die Abschaltung kann deaktiviert werden.

Sicherungen

Schmelzsicherungen DMM (mA-Strommessbereiche):

F2: FF0,63A/400V, 5 mm x 20 mm Schaltvermögen ≥ 10 kA bei 400 V AC

(Artikelnummer: Z109M)

Kalibrator:

F1: FF0,16A/400V, 5 mm x 20 mm Schaltvermögen ≥ 10 kA bei 400 V AC (Artikelnummer: Z109N ab 06.2016)

Elektrische Sicherheit des Multimeterteils

Schutzklasse II nach DIN EN 61 010-1:2011/VDE 0411-1:2011

Messkategorie II Arbeitsspannung 300 V Verschmutzungsgrad 2

Prüfspannung 2,2 kV~ nach DIN EN 61010-1:2011/

VDE 0411-1:2011

Elektromagnetische Verträglichkeit EMV

Störaussendung EN 61326-1:2013 Klasse B

Störfestigkeit EN 61326-1:2013 EN 61326-2-1:2013

Umgebungsbedingungen

Genauigkeitsbereich 0 °C ... +40 °C Arbeitstemperaturen -10 °C ... +50 °C

Lagertemperaturen −25 °C ... +70 °C (ohne Batterien)

Relative Luftfeuchte 40% ... 75%,

Betauung ist auszuschließen

Höhe über NN bis zu 2000 m

Technische Daten

Mechanischer Aufbau

Schutzart IP 65,

Tabellenauszug zur Bedeutung des IP-Codes

IP XY	Schutz gegen Eindringen		Schutz gegen Eindringen
(1. Ziffer X)	von festen Fremdkörpern		von Wasser
6	staubdicht	5	Strahlwasser

Abmessungen 200 mm x 87 mm x 45 mm Gewicht ca. 430 g mit Batterien

Datenschnittstelle

Typ optisch mit Infrarotlicht durch das Gehäuse Datenübertragung seriell, bidirektional (nicht IrDa-kompatibel)

Protokoll gerätespezifisch
Baudrate 38400 Baud
Funktionen **DMM**: Daten lesen

Kalibrator: Einstellen/Abfragen von Kali-

brierfunktionen und Parametern

Durch den aufsteckbaren Schnittstellenadapter USB X-TRA (siehe Zubehör) erfolgt die Adaption an die Rechnerschnittstelle USB.

Wartung und Kalibrierung

Achtuna!

Trennen Sie das Gerät vom Messkreis bevor Sie zum Batterie- oder Sicherungsaustausch Batterie- oder Sicherungsfachdeckel öffnen!

10.1 Signalisierungen - Fehlermeldungen

Meldung	Funktion	Bedeutung
FuSE	Strommessung	Sicherung defekt
	in allen Betriebsarten	die Batteriespannung ist unter 1,8 V gesunken
OL	Messen	Signalisierung eines Überlaufs

10.2 Batterien

Batterieentnahme in Betriebspausen

Die integrierte Quarzuhr benötigt auch bei ausgeschaltetem Gerät Hilfsenergie und belastet die Batterien. Vor längeren Betriebspausen (z. B. Urlaub) wird daher empfohlen, die Batterien zu entfernen. Hierdurch verhindern Sie Tiefentladung und Auslaufen der Batterien, welches unter ungünstigen Umständen zu Beschädigungen führen kann.

Hinweis

Bei einem Batteriewechsel gehen die gespeicherten Messdaten verloren. Um einem Datenverlust vorzubeugen, empfehlen wir vor einem Batteriewechsel, die Daten mithilfe der Software **METRAwin 10** auf einem PC zu sichern.

Die eingestellten Betriebsparameter bleiben gespeichert, Zeit und Datum müssen neu gesetzt werden.

Ladezustand

Im Menü " InFa" können Sie sich über den aktuellen Ladezustand der Batterien informieren:

HALL: 2 75 V

Überzeugen Sie sich vor der ersten Inbetriebnahme oder nach Lagerung Ihres Gerätes, dass die Batterien Ihres Gerätes nicht ausgelaufen sind. Wiederholen Sie diese Kontrolle danach in regelmäßigen kurzen Abständen.

Bei ausgelaufener Batterie müssen Sie, bevor Sie das Gerät wieder in Betrieb nehmen, den Batterie-Elektrolyt sorgfältig mit einem feuchten Tuch vollständig entfernen und eine neue Batterie einsetzen.

Wenn auf der Anzeige das Zeichen " T " erscheint, dann sollten Sie so bald wie möglich die Batterie wechseln. Sie können zwar noch weiterhin messen, müssen jedoch mit verringerter Messgenauigkeit rechnen.

Das Gerät arbeitet mit zwei 1.5 V-Batterien nach IEC R 6 oder IEC LR 6 oder mit zwei entsprechenden NiCd-Akkus.

Batterien austauschen

Achtung!

Trennen Sie das Gerät vom Messkreis, bevor Sie zum Batterieaustausch den Batteriefachdeckel öffnen!

- Legen Sie das Gerät auf die Frontseite.
- Drehen Sie die Schlitzschraube des Deckels mit den Batteriesymbolen entgegen dem Uhrzeigersinn.
- Heben Sie den Deckel ab und nehmen Sie die Batterien aus dem Batteriefach.
- Setzen Sie zwei neue 1,5 V-Mignonzellen entsprechend den angegebenen Polaritätssymbolen auf dem Batteriefachdeckel in das Batteriefach ein.
- Beim Wiedereinsetzen des Batteriefachdeckels muss die Seite mit den Führungshaken zuerst eingesetzt werden. Drehen Sie die Schlitzschraube im Uhrzeigersinn ein.
- ⇒ Bitte entsorgen Sie die verbrauchten Batterien umweltgerecht!

10.3 Sicherung

Sicherung testen

Die Sicherung wird automatisch überprüft:

- beim Einschalten des Gerätes in der Drehschalterstellung mA
- bei eingeschaltetem Gerät und Anwählen der Drehschalterstellung mA
- im aktiven Strommessbereich bei anliegender Spannung

Ist die Sicherung defekt oder nicht eingesetzt, wird "FuSE" auf der Digitalanzeige eingeblendet. Die Sicherung unterbricht die Strommessbereiche. Alle anderen Messbereiche bleiben weiter in Funktion.

Sicherung austauschen

Beseitigen Sie nach dem Ansprechen einer Sicherung zuerst die Überlastursache bevor Sie das Gerät wieder betriebsbereit machen!

Achtung!

Trennen Sie das Gerät vom Messkreis, bevor Sie zum Sicherungsaustausch den Sicherungsfachdeckel öffnen!

- Legen Sie das Gerät auf die Frontseite.
- Drehen Sie die Schlitzschraube des Deckels mit dem Sicherungssymbol entgegen dem Uhrzeigersinn.
- Heben Sie den Deckel ab und hebeln Sie die defekte Sicherung mit der flachen Seite des Sicherungsdeckels heraus.
- Setzen Sie eine neue Sicherung ein. Achten Sie darauf, dass die Sicherung mittig, d. h. innerhalb der seitlichen Stege fixiert wird.
- Beim Wiedereinsetzen des Sicherungsdeckels muss die Seite mit den Führungshaken zuerst eingesetzt werden.
 Drehen Sie die Schlitzschraube im Uhrzeigersinn ein.
- ⇒ Entsorgen Sie die defekte Sicherung über den Hausmüll.

Achtung!

Achten Sie unbedingt darauf, dass Sie nur die vorgeschriebene Sicherung einsetzen!

Bei Verwendung einer Sicherung mit anderer Auslösecharakteristik, anderem Nennstrom oder anderem Schaltvermögen besteht Gefahr für Sie und für Schutzdioden. Widerstände oder andere Bauteile.

Die Verwendung geflickter Sicherungen oder Kurzschließen des Sicherungshalters ist unzulässig.

Mary Hinweis

zur Prüfung der Sicherung bei eingeschaltetem Gerät

Nach Einlegen der Sicherung im eingeschalteten Zustand des Gerätes muss das Gerät kurz aus- und wieder eingeschaltet oder kurzzeitig in einen Nicht-Strommessbereich und zurück in den mA-Messbereich geschaltet werden. Bei schlechtem Kontakt oder defekter Sicherung erscheint FUSE in der Anzeige.

10.4 Wartung Gehäuse

Eine besondere Wartung des Gehäuses ist nicht nötig. Achten Sie auf eine saubere Oberfläche. Verwenden Sie zur Reinigung ein leicht feuchtes Tuch. Vermeiden Sie den Einsatz von Putz-. Scheuer- oder Lösungsmitteln.

10.5 Rücknahme und umweltverträgliche Entsorgung

Bei dem Gerät handelt es sich um ein Produkt der Kategorie 9 nach ElektroG (Überwachungs- und Kontrollinstrumente). Dieses Gerät fällt unter die RoHS-Richtlinie. Im Übrigen weisen wir darauf hin, dass der aktuelle Stand hierzu im Internet bei www.gossenmetrawatt.com unter dem Suchbegriff WEEE zu finden ist.

Nach WEEE 2012/19/EU und ElektroG kennzeichnen wir unsere Elektro- und Elektronikgeräte mit dem nebenstehenden Symbol nach DIN EN 50419.

Diese Geräte dürfen nicht mit dem Hausmüll entsorat werden. Bezüglich der Altgeräte-Rücknahme wenden Sie sich bitte an unseren Service.

Sofern Sie in Ihrem Gerät oder Zubehör Batterien oder Akkus einsetzen, die nicht mehr leistungsfähig sind, müssen diese ordnungsgemäß nach den gültigen nationalen Richtlinien entsorgt werden

Batterien oder Akkus können Schadstoffe oder Schwermetalle enthalten wie z. B. Blei (PB), Cd (Cadmium) oder Quecksilber (Hg).

Das nebenstehende Symbol weist darauf hin, dass Batterien oder Akkus nicht mit dem Hausmüll entsorgt werden dürfen, sondern bei hierfür eingerichteten Sammelstellen abgegeben werden müssen.

10.6 Rekalibrierung

Die Messaufgabe und Beanspruchung Ihres Messgeräts beeinflussen die Alterung der Bauelemente und kann zu Abweichungen von der zugesicherten Genauigkeit führen.

Bei hohen Anforderungen an die Messgenauigkeit sowie im Baustelleneinsatz mit häufiger Transportbeanspruchung und großen Temperaturschwankungen, empfehlen wir ein relativ kurzes Kalibrierintervall von 1 Jahr. Wird Ihr Messgerät überwiegend im Laborbetrieb und Innenräumen ohne stärkere klimatische oder mechanische Beanspruchungen eingesetzt, dann reicht in der Regel ein Kalibrierintervall von 2-3 Jahren.

Bei der Rekalibrierung 1 in einem akkreditierten Kalibrierlabor (DIN EN ISO/IEC 17025) werden die Abweichungen Ihres Messgeräts zu rückführbaren Normalen gemessen und dokumentiert. Die ermittelten Abweichungen dienen Ihnen bei der anschließenden Anwendung zur Korrektur der abgelesenen Werte.

Gerne erstellen wir für Sie in unserem Kalibrierlabor DAkkS- oder Werkskalibrierungen. Weitere Informationen hierzu finden Sie auf unserer Homepage unter:

www.gossenmetrawatt.com (\rightarrow Unternehmen \rightarrow DAkkS-Kalibrierzentrum $oder \rightarrow$ FAQs \rightarrow Fragen und Antworten zur Kalibrierung).

10.7 Herstellergarantie

Der Garantiezeitraum für alle Digitalmultimeter und Kalibriergeräte der Serie METRAHIT beträgt 3 Jahre nach Lieferung. Die Herstellergarantie umfasst Produktions- und Materialfehler, ausgenommen sind Beschädigungen durch nicht bestimmungsgemäßen Gebrauch oder Fehlbedienung sowie jegliche Folgekosten.

Der Kalibrierschein bestätigt, dass die spezifizierten technischen Daten vom Produkt zum Zeitpunkt der Kalibrierung eingehalten wurden. Die Einhaltung der spezifizierten technischen Daten innerhalb der zulässigen Toleranzen garantieren wir 12 Monate ab Lieferung.

Durch eine regelmäßige Rekalibrierung Ihres Messgerätes erfüllen Sie die Forderungen eines Qualitätsmanagementsystems nach DIN EN ISO 9001.

Prüfung der Spezifikation oder Justierung sind nicht Bestandteil einer Kalibrierung. Bei Produkten aus unserem Hause wird jedoch häufig eine erforderliche Justierung durchgeführt und die Einhaltung der Spezifikation bestätigt.

11 Zubehör

11.1 Allgemein

Das für unsere Messgeräte erhältliche umfangreiche Zubehör wird regelmäßig auf die Konformität mit den derzeit gültigen Sicherheitsnormen überprüft und bei Bedarf für neue Einsatzzwecke erweitert. Sie finden das für Ihr Messgeräte geeignete aktuelle Zubehör mit Bild, Bestell-Nr., Beschreibung sowie je nach Umfang des Zubehörs mit Datenblatt und Bedienungsanleitung im Internet unter www.gossenmetrawatt.de (\rightarrow Messtechnik – tragbar \rightarrow Multimeter Digital \rightarrow METRAHIT ... \rightarrow Zubehör).

11.2 Technische Daten der Messleitungen (Lieferumfang Sicherheitskabelset KS29)

Elektrische Sicherheit

maximale Bemessungsspannung Messkategorie 1000 V CAT III

maximaler

Bemessungsstrom 16 A (mit aufgesteckten Sicherheitskappen 1 A)

Umgebungsbedingungen (EN 61010-031)

Temperatur −20 °C ... + 50 °C

relative Luftfeuchte 50 ... 80%

Verschmutzungsgrad 2

Anwendung

Achtung!

Nur mit den auf die Prüfspitzen der Messleitungen aufgesteckten Sicherheitskappen dürfen Sie nach DIN EN 61010-031 in einer Umgebung nach Messkategorie III messen.

Bitte beachten Sie die Maximalwerte der elektrischen Sicherheit des Messgeräts (Multimeterteils)!

Für die Kontaktierung in 4-mm-Buchsen müssen Sie die Sicherheitskappen entfernen, indem Sie mit einem spitzen Gegenstand (z. B. zweite Prüfspitze) den Schnappverschluss der Sicherheitskappe aushebeln.

11.3 Netzteiladapter NA X-TRA (kein Lieferumfang)

Verwenden Sie zur Stromversorgung Ihres Geräts nur den Netzteiladapter von GMC-I Messtechnik GmbH. Dieser gewährleistet durch ein hochisoliertes Kabel Ihre Sicherheit sowie eine sichere elektrische Trennung (Sekundärnenndaten 5 V/600 mA). Bei Stromversorgung durch den Netzadapter werden die eingesetzten Batterien elektronisch abgeschaltet, so dass diese im Gerät verbleiben können.

Wegen kapazitäver Kopplung des Netzadapters Z218G kann es im Multimeterbetrieb zu einem zusätzlichen Messfehler kommen. Wir empfehlen deshalb für Kapazitäts- und Wechselstromgrößen-Messung den Batteriebetrieb.

11.4 Schnittstellenzubehör (kein Lieferumfang)

Bidirektionaler Schnittstellenadapter USB X-TRA

Mit diesem Adapter können Sie das **METRACAL MC** mit der USB-Schnittstelle eines PCs verbinden. Der Adapter ermöglicht die Datenübertragung zwischen Multimeter und PC.

PC-Auswertesoftware METRAwin 10

Die PC-Software **METRAwin 10** ist ein mehrsprachiges Messdatenerfassungs-Programm* für die zeitbezogene Aufzeichnung, Visualisierung, Auswertung und Protokollierung der Messwerte aus den Multimetern der **METRAHIT**-Serie.

Die detaillierten Systemvoraussetzungen finden Sie in der Installationsanleitung zur METRAwin 10/METRAwin 45.

Kalibriersoftware METRAwin 90

Die Kalibriersoftware **METRAwin 90** ist ein mehrsprachiges Programm* zur PC-gestützten Steuerung diverser Kalibratoren für elektrische Größen und zur Dokumentation der Kalibrierergebnisse.

Eine Beschreibung der Produktvarianten METRAwin 90-2, METRAwin 90-F und METRAwin 90-FJ sowie deren detaillierten Systemvoraussetzungen finden Sie in der Installationsanleitung zur METRAwin 90.

^{*} lauffähig auf einem IBM-kompatiblen Windows-Betriebssystem

Stichwortverzeichnis

12 Stichwortverzeichnis

Numerics 0.diSP
A Addr
Anzeigenbeleuchtung
Automatische Abschaltung verhindern17
Zeit vorgeben
В
bAtt
austauschen77 Betriebspausen
Ladezustand
bEEP
D
dAtE
Diodentest
E
einschalten manuell

Fehlermeldungen76
â
Geräterücknahme78
4
Herstellergarantie
Hotline Produktsupport3
rStb67
tEMP62
<
Kapazitätsmessung36
Lieferumfang2
M
Messbereichswahl
automatisch18
manuell18
Messkategorie
Bedeutung8
Messleitungen80
Messwertspeicherung
Funktion DATA21
MIN/MAX-Werte22
N
Netzteiladapter
Inbetriebnahme16
Lage der Anschlussbuchse15

Zubehör	80
0 OCCUP	62
P Produktsupport	3
R rAtE	
Rekalibrier-Service Reparatur- und Ersatzteil-Service	
S Schnittstellen	
Zubehör	81
Zustände	13
Schulung	
Servicedienste	
Sicherheitsvorkehrungen	8
Sicherung	
austauschen	77
Softwarefreischaltung	3
Spannungskomparator	29, 30
Spannungsmessung	
Funktionsumfang	27
Hinweise	27
Speicher	
Aufzeichnung beenden	24
Aufzeichnung starten	23
Belegung abfragen	
löschen	
Standardeinstellungen	64

Strommessung	
Funktionsumfang	3 [.]
Hinweise	3 [.]
Symbole	
Digitalanzeige	1;
Drehschalterpositionen	1
Gerät	1
Т	
- Temperaturmessung	
mit Thermoelementen	3
mit Widerstandsthermometern	3
tiME	64
U	
Übersicht	
Parameter	6
Tasten und Anschlüsse	1
V	
Vergleichsstelle	33
W Wartung	
Gehäuse	7
WEEE-Kennzeichnung	
Werkseinstellungen	
Widerstandsmessung	
Z Zangonatromaanaar	40 41
Zangenstromsensor	
Zangenstromwandler Zuleitungswiderstand	

Erstellt in Deutschland ● Änderungen vorbehalten ● Eine PDF-Version finden Sie im Internet

GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg • Germany Telefon+49 911 8602-111 Telefax+49 911 8602-777 E-Mail info@gossenmetrawatt.com www.gossenmetrawatt.com