


Strömungsüberwachung Inline-Sensor ohne integrierte Auswerteelektronik FCI-D03A4-NA-H1141/M16

Typenbezeichnung Ident-Nr.	FCI-D03A4-NA-H1141/M16 6870633	
Einbaubedingungen	Inline-Sensor	
Arbeitsbereich Durchfluss	0,0050,15 l/min	
Bereitschaftszeit	typ. 8 s (215 s)	
Einschaltzeit	typ. 2 s (115 s)	
Ausschaltzeit	typ. 2 s (115 s)	
Temperatursprung-Reaktionszeit	max. 12 s	
Temperaturgradient	≤ 250 K/min	
Medientemperatur	-20+80 °C	
Umgebungstemperatur	-20+70 °C	
Schutzart	IP67	
Bauform	Inline	
Gehäusewerkstoff	Edelstahl, V4A (1.4571)	
Sensormaterial	Edelstahl, V4A (1.4571)	
Elektrischer Anschluss	Steckverbinder, M12 x 1	
Druckfestigkeit	10 bar	
Prozessanschluss	M16 × 1,5	

- Sensor für flüssige Medien
- Kalorimetrische Funktionsweise
- Abgleich am Auswertegerät über Potentiometer
- Anzeige via LED-Kette am Auswertege-
- Steckergerät, M12 x 1
- 4-Drahtanschluss an ein Auswertegerät

Anschlussbild

Funktionsprinzip

Die Funktion der Inline-Strömungssensoren basiert auf dem thermodynamischen Prinzip. In einem Messrohr wird Wärme erzeugt und vom vorbeiströmenden Medium aufgenommen. Die dabei abgeführte Wärmemenge ist ein Maß für die Strömungsgeschwindigkeit. Somit überwachen TURCK Strömungssensoren zuverlässig und verschleissfrei die Strömung von flüssigen oder gasförmigen Medien. Geringer Druckverlust und schnelle Reaktion auf Strömungsänderungen sind Eigenschaften, die diese Geräte auszeichnen.