

E-CHECK

Serie PROFITEST MASTER PROFITEST MBASE+, MTECH+, MPRO, MXTRA, SECULIFE IP Prüfgeräte DIN VDE 0100/IEC 60364-6

3-349-646-01 26/11.14

Akkreditierungsstelle D-K-15080-01-01

Prüfen von Fehlerstromschutzeinrichtungen (RCD-Schutzschaltern)

- Messen der Berührungsspannung ohne Auslösung des Schalters. Hierbei wird die auf Nennfehlerstrom bezogene Berührungsspannung mit 1/3 des Nennfehlerstromes gemessen.
- · Prüfung auf N-PE-Vertauschung
- Auslöseprüfung mit Nennfehlerstrom, Messung der Auslösezeit
- Prüfen von Anlagen bzw. RCD-Schutzschaltern mit steigendem Fehlerstrom mit Anzeige des Auslösestroms sowie der Berührungsspannung
- Prüfen von RCD-Schutzschaltern mit folgenden Nennströmen: ½ I_{AN}, 1 I_{AN}, 2 • I_{ΔN}, (5 • I_{ΔN} bis 300 mA: Mpro/Mxtra/**SECULIFE IP** bis 100 mA: Mbase+/Mtech+)
- Intelligente Rampe (nur PROFITEST MXTRA): gleichzeitige Messung von Abschaltstrom $I_{\Lambda N}$ und Abschaltzeit t_{Λ}
- Prüfen selektiver S, SRCDs, PRCDs (Schukomat, Sidos o. ä.), Typ G/R, Typ AC, Typ A, F; Typ B, B+ und Typ EV (außer MBASE+ und MPRO)
- Prüfen von RCD-Schutzschaltern, die für pulsierende, Gleich- und Wechselfehlerströme geeignet sind die Prüfung erfolgt mit positiven oder negativen Halbwellen
- Erstellung von Prüfsequenzen (ETC)
- Intelligente Datenübertragung Bidirektionale Schnittstelle zu DDS-CAD Elektroplanung

Simulation der Betriebszustände von Elektrofahrzeugen an E-Lade-

New! stationen verschiedener Hersteller (nur MTECH+ und MXTRA)

Niederohmmessung

DESIGN **PLUS**

powered by: light+building

Mit einem Messstrom ≥ 200 mA DC, automatischer Umpolung der Messspannung und wählbarer Stromflussrichtung kann der Potenzialausgleichswiderstand und der Schutzleiterwiderstand gemessen werden. Die Überschreitung eines (einstellbaren) Grenzwertes wird durch eine LED signalisiert.

Erdungswiderstandsmessung

Neben der Messung des Gesamtwiderstands einer Erdungsanlage, ist die selektive Messung des Erdungswiderstandes eines einzelnen Erders möglich, ohne diesen von der Erdungsanlage abtrennen zu müssen. Hierzu wird der als Zubehör erhältliche Zangenstromsensor verwendet.

PROFITEST MPRO und PROFITEST MXTRA ermöglichen darüber hinaus batteriebetriebene "Akkubetrieb" Erdungswiderstandsmessungen: 3-Pol/4-Pol- und Erdschleifenwiderstandsmessungen.

Universelles Anschlusssystem

Die auswechselbaren Steckereinsätze und der aufsteckbare Zweipoladapter - dieser kann für Drehfeldmessungen zum Dreipoladapter erweitert werden - ermöglichen den weltweiten Einsatz des Prüfgerätes.

Besonderheiten

- Anzeige von zulässigen Sicherungstypen für elektrische Anlagen
- Prüfung des Anlaufs von Energieverbrauchszählern
- Messung von Vor-, Ableit- und Ausgleichsströmen bis 1 A sowie Arbeitsströme bis 1000 A über Zangenstromsensor (als Zubehör)
- Messen der Drehfeldrichtung (Phasenfolge, höchste verkettete Spannung)

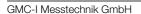
Großer Spannungs- und Frequenzbereich

Eine Weitbereichsmesseinrichtung ermöglicht den Einsatz des Prüfgeräts für alle Wechselstrom- und Drehstromnetze mit Spannungen von 65 bis 500 V und Frequenzen von 16 bis 400 Hz.

Schleifen- und Netzimpedanzmessung

Die Messungen von Schleifen- und Netzimpedanz können im Bereich von 65 bis 500 V durchgeführt werden. Die Umrechnung in Kurzschlussstrom erfolgt bezogen auf die jeweilige Netz-Nennspannung, sofern die gemessene Netzspannung innerhalb des vorgegebenen Bereiches liegt. Zusätzlich wird bei der Umrechnung die Messabweichung des PROFITEST MASTER mit berücksichtigt. Außerhalb dieses Bereiches wird der Kurzschlussstrom aus der aktuellen Spannung am Netz und der gemessenen Impedanz berechnet.

Messung des Isolationswiderstandes mit Nennspannung, mit variabler oder ansteigender Prüfspannung


Der Isolationswiderstand wird üblicherweise bei den Nennspannungen 500 V, 250 V oder 100 V gemessen. Für Messungen an empfindlichen Bauteilen sowie bei Anlagen mit spannungsbegrenzenden Bauteilen können von der Nennspannung abweichende Prüfspannungen von 20/50 bis 1000 V eingestellt werden.

Zum Aufspüren von Schwachstellen in der Isolation sowie zum Ermitteln der Ansprechspannung von spannungsbegrenzenden Bauelementen kann mit einer kontinuierlich ansteigenden Prüfspannung gemessen werden.

Die Spannung am Messobjekt, eine evtl. vorhandene Ansprech-/ Durchbruchspannung werden auf dem Display des Prüfgeräts angezeigt.

Standortisolationsmessung

Die Standortisolationsmessung wird mit der aktuellen Netzfrequenz und Netzspannung durchgeführt.

Prüfgeräte DIN VDE 0100/IEC 60364-6

Anzeige - Wählbare Landessprache

Das LCD-Anzeigefeld besteht aus einer hinterleuchteten Punktmatrix, auf der sowohl die Menüs, Einstellmöglichkeiten, Messergebnisse, Tabellen, Hinweise und Fehlermeldungen als auch Anschlussschaltungen dargestellt werden.

Je nachdem, in welchem Land das Prüfgerät eingesetzt wird, kann die Anzeige in der wählbaren Landessprache erfolgen: D, GB, I, F, E, P, NL, S, N, FIN, CZ oder PL

Bedienung

Die Grundfunktionen werden direkt mit einem Funktionsdrehrad ausgewählt. Softkey-Tasten ermöglichen die komfortable Auswahl von Unterfunktionen und die Einstellung von Parametern. Nicht verfügbare Funktionen bzw. Parameter werden automatisch ausgeblendet.

Die Start- und RCD-Auslössefunktion am Gerät haben die gleiche Funktion wie die beiden Tasten am Prüfstecker, um auch an schwer zugänglichen Stellen problemlos messen zu können. Für alle Grund- und Unterfunktionen können Anschlussschaltbilder, Messbereiche und Hilfetexte im Anzeigefeld eingeblendet werden.

Phasenprüfer

Nach Start eines Prüfablaufs und beim Berühren der Kontaktfläche für Fingerkontakt wird das Schutzleiterpotenzial überprüft. Das LCD-Symbol PE wird eingeblendet, wenn zwischen der berührten Kontaktfläche und dem Schutzkontakt des Prüfsteckers eine Potenzialdifferenz von mehr als 25 V besteht.

Fehlersignallisierungen

- Anschlussfehler beim Anschluss des Prüfgeräts an die Anlage erkennt das Gerät automatisch und signalisiert diese in einem Anschlusspiktogramm.
- Fehler in der Anlage (fehlende Netz- bzw. Leiterspannung, ausgelöster RCD) werden über 3 LEDs und Pop Ups im Kopfteil angezeigt.

Akkukontrolle und Selbsttest

Die Akkukontrolle wird unter Last durchgeführt. Das Ergebnis wird numerisch und symbolisch angezeigt. Beim Selbsttest können nacheinander Testbilder aufgerufen und Anzeige-LEDs getestet werden. Automatische Abschaltung des Prüfgeräts bei entladenen Akkus. Mikroprozessorgesteuerte Ladekontrollschaltung zum sicheren Laden von NiMH- oder NiCd-Akkus.

Dateneingabe an der RS232-Schnittstelle

Daten können über einen an der RS232-Schnittstelle angeschlossenen Barcodeleser oder RFID-Scanner eingelesen und Kommentare über Softkey-Tasten eingegeben werden.

PC-Anwendersoftware ETC

ETC bietet eine Vielzahl unterstützender Optionen zur Datenerfassung und -verwaltung.

- Die Software erfasst u. a. alle wichtigen Daten zur Protokollierung nach DIN VDE 0100 Teil 600
- Prüfprotokolle (ZVEH) können automatisch erstellt werden
- Verteilerstrukturen mit Stromkreis-/RCD-Daten sind individuell definierbar
- Erstellte Strukturen k\u00f6nnen gespeichert und bei Bedarf \u00fcber USB-Anschluss in das Pr\u00fcfger\u00e4t geladen werden
- Datenexporte sind in EXCEL, CSV und XML möglich
- Die Geräteauswahllisten k\u00f6nnen bearbeitet werden

Übersicht Leistungsumfang der Gerätevarianten

Ubersicht Leistungsumfang de	ו עב	ialev	anan	LUII	
PROFITEST (Artikelnummer)	_	_			<u>₩</u> _
(Altikellidilillei)	30S)	N S	Мтесн+ (M520R)	A (0.0)	
	BAS 152	Mpro (M520N	1EC	MXTRA (M520P)	ECL 152
Duilfan van Fahlaustusus Cahutusinuishtusus	≥ € • /DOD=		≥ €	≥ €	SE
Prüfen von Fehlerstrom-Schutzeinrichtunger			-	,	,
U _B -Messung ohne FI-Auslösung	✓ ✓	1	1	1	✓ ✓
Messung der Auslösezeit Messung des Auslösestroms I _F	✓ ✓	/	/	/	1
selektive, SRCDs, PRCDs, Typ G/R	1	1	✓	1	✓ ✓
allstromsensitive RCDs Typ B, B+, EV	_	_	1	/	1
Prüfen von Isolationsüberwachungsgeräten			•		
(IMDs)	_	_	_	✓	1
Prüfen von Differenzstrom-Überwachungs-				,	
geräten (RCMs)	_	_	_	1	_
Prüfung auf N-PE-Vertauschung	✓	1	✓	✓	✓
Messungen der Schleifenimpedanz Z _{L-PE} / Z	N.				
Sicherungstabelle für Netze ohne RCD	L-N	/	/	/	1
ohne RCD-Auslösung, Sicherungstabelle	_	_	/	/	1
mit 15 mA Prüfstrom ¹⁾ , ohne RCD-Auslösung	/	1	/	/	1
Erdungswiderstand R _E (Netzbetrieb)					
I/U-Messverfahren (2-/3-Pol-Messverfahren	1	✓	1	✓	1
über Messadpater 2-Pol/2-Pol + Sonde)					
Erdungswiderstand R _E (Akkubetrieb)	_	/	_	/	_
3- oder 4-Pol-Messverfahren über Adapter PRO-RE				Ľ	
Spezifischer Erdwiderstand ρ _E (Akkubetrieb)	_	/	_	/	_
(4-Pol-Messverfahren über Adapter PRO-RE)					
Selektiver Erdungswiderstand R _E (Netzbetrieb)	1	,	,	,	,
mit 2-Pol-Adpater, Sonde, Erder und Zangen- stromsensor (3-Pol-Messverfahren)	•	•	•		•
Selektiver Erdungswiderstand R _F (Akkubetrieb)					
mit Sonde, Erder und Zangenstromsensor		,		,	
(4-Pol-Messverfahren über Adapter PRO-RE und	_	_	_	'	_
Zangenstromsensor)					
Erdschleifenwiderstand R _{ESCHL} (Akkubetrieb)					
mit 2 Zangen (Zangenstromsensor direkt und	_	✓	_	✓	_
Zangenstromswandler über Adapter PRO-RE/2)					
Messung Potenzialausgleich R _{L0} automatische Umpolung	1	1	1	✓	1
Isolationswiderstand R _{ISO}					
Prüfspannung variabel oder ansteigend (Rampe)	✓	✓	✓	✓	✓
Spannung U _{L-N} / U _{L-PE} / U _{N-PE} / f	/	/	/	/	/
Sondermessungen Ableitstrom (Zangenmessung) I _L , I _{AMP}	1		1		1
Drehfeldrichtung	✓ ✓	/	/	1	/
Erdableitwiderstand R _{E(ISO)}	1	-/	./	./	1
Spannungsfall (ΔU)	1	/	1	/	1
Standortisolation Z _{ST}	/	/	/	/	1
Zähleranlauf (kWh-Test)	/	/	/	/	Ť.
Ableitstrom mit Adapter PRO-AB (IL)	_	_	_	/	1
Restspannung prüfen (Ures)	_		_	/	Ė
Intelligente Rampe (ta + Δl)	_	_	_	/	_
Elektrofahrzeuge an E-Ladesäulen (IEC 61851)	_	_	1	1	_
Protokollierung von Fehlersimulationen an					
PRCDs mit dem Adapter PROFITEST PRCD				1	
Ausstattung					
Sprache der Bedienerführung wählbar ²⁾	/	/	1	/	/
Speicher (Datenbank max. 50000 Objekte)	1	1	1	1	1
Autofunktion Prüfsequenzen	1	1	1	1	1
Schnittstelle für RFID-/Barcode Scanner RS232	1	1	✓	1	1
Schnittstelle für Datenübertragung USB	1	/	1	1	1
Schnittstelle für <i>Bluetooth</i> ®	_	_	✓	/	1
PC-Anwendersoftware ETC	1	1	1	/	✓
Messkategorie CAT III 600 V / CAT IV 300 V	1	1	1	1	✓
DAkkS-Kalibrierschein	1	1	1	1	1
1) as generated life Massures jet nur singuall					

sogenannte Life-Messung, ist nur sinnvoll, falls keine Vorströme in der Anlage vorhanden sind. Nur für Motorschutzschalter mit kleinem Nennstrom geeignet.

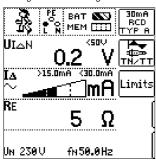
²⁾ z. Zt. verfügbare Sprachen: D, GB, I, F, E, P, NL, S, N, FIN, CZ, PL

Prüfgeräte DIN VDE 0100/IEC 60364-6

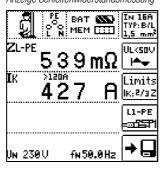
Datenschnittstelle

Über die eingebaute USB-Schnittstelle werden die Messdaten zu einem PC übertragen, wo sie in Protokolle gedruckt und archiviert werden können.

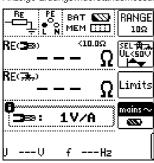
Software-Update

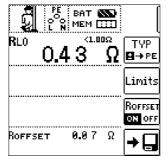

Das Prüfgerät ist zukunftssicher, da die Firmware über die USB-Schnittstelle aktualisiert werden kann. Ein Software-Update erfolgt im Rahmen einer Rekalibrierung durch unseren Service oder direkt durch den Kunden.

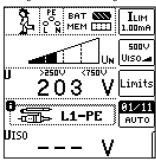
Anzeigebeispiele


Prüfgeräte PROFITEST MASTER und SECULIFE IP

Softkey-Tasten ermöglichen die komfortable Auswahl von Unterfunktionen und Parametern. Nicht verfügbare Unterfunktionen und Parameter werden automatisch ausgeblendet.


Anzeige RCD-Messung


Anzeige Schleifenwiderstandsmessung


Anzeige Erdungswiderstandsmessung

Anzeige Niederohmmessung

Anzeige Isolationsmessung

Anzeiae Spannunasmessuna

1 33		BAT	600K)	ა Մ <u>Լ-∦-</u> թը (@\$Մვ~ა
UL-N	22	7	٧	= क‡ (8 =क*\$7
UL-PE	22	9	٧	
UN-PE	1	.6	٧	
Us-pe	0.4U	f 50	.0Hz	+

Angewendete Vorschriften und Normen

IEC 61010 1/EN 61010 1/	Ciabarhaitahaatimmungan für alaktriaaha Mass
IEC 61010-1/EN 61010-1/ VDE 0411-1	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte Teil 1: Allgemeine Anforderungen (IEC 61010-1:2010 + Cor. :2011) Teil 31: Sicherheitsbestimmungen für handgehaltenes Messzubehör zum Messen und Prüfen (IEC 61010-031:2002 + A1:2008)
IEC 61557/ EN 61557/ VDE 0413	Teil 1: Allgemeine Anforderungen (IEC 61557-1:2007) Teil 2: Isolationswiderstand (IEC 61557-2:2007) Teil 3: Schleifenwiderstand (IEC 61557-3:2007) Teil 4: Widerstand von Erdungsleitern, Schutzleitern und Potenzialausgleichsleitern (IEC 61557-4:2007) Teil 5: Erdungswiderstand (IEC 61557-5:2007) Teil 6: Wirksamkeit von Fehlerstrom-Schutzeinrichtungen (RCD) in TT-, TN- und IT-Systemen (IEC 61557-6:2007) Teil 7: Drehfeld (IEC 61557-7:2007) Teil 10: Elektrische Sicherheit in Niederspannungsnetzen bis AC 1000 V und DC 1500 V — Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen (IEC 61557-10:2000) Teil 11: Wirksamkeit von Differenzstrom-Überwachungsgeräten (RCMs) Typ A und Typ B in TT-, TN- und IT-Systemen (IEC 61557-11:2009) (nur PROFITEST MXTRA)
EN 60529 VDE 0470 Teil 1	Prüfgeräte und Prüfverfahren Schutzarten durch Gehäuse (IP-Code)
DIN EN 61 326-1 VDE 0843-20-1	Elektrische Mess-, Steuer-, Regel- und Laborgeräte – EMV-Anforderungen – Teil 1: Allgemeine Anforderungen
IEC 60364-6-61 VDE 0100 Teil 600	Errichten von Niederspannungsanlagen – Teil 6: Prüfungen
IEC 60364-6-62 EN 50110-1 VDE 0105 Teil 100	Betrieb von elektrischen Anlagen – Teil 100: Allgemeine Festlegungen
IEC 60364-7-710 VDE 0100 Teil 710	Errichten von Niederspannungsanlagen – Anforderungen für Betriebsstätten, Räume und Anla- gen besonderer Art – Teil 710: Medizinisch genutzte Bereiche
IEC 61851-1 DIN EN 61851-1	Elektrische Ausrüstung von Elektro-Straßenfahrzeugen - Konduktive Ladesysteme für Elektrofahrzeuge –Teil 1: Allgemeine Anforderungen

Technische Kennwerte

Netzimpedanzwinkel

Sondenwiderstand

Nenngebrauchsbereiche	
Spannung U _N	120 V (108 132 V) 230 V (196 253 V) 400 V (340 440 V)
Frequenz f _N	16 2/3 Hz (15,4 18 Hz) 50 Hz (49,5 50,5 Hz) 60 Hz (59,4 60,6 Hz) 200 Hz (190 210 Hz) 400 Hz (380 420 Hz)
Gesamtspannungsbereich	65 550 V
Gesamtfrequenzbereich	15,4 420 Hz
Kurvenform	Sinus
Temperaturbereich	0 °C + 40 °C
Akkuspannung	8 12 V

< 50 k Ω

entsprechend $\cos \varphi = 1 \dots 0.95$

PROFITEST MBASE+, MTECH+, MPRO, MXTRA, SECULIFE IP Prüfgeräte DIN VDE 0100/IEC 60364-6

Technische Kennwerte PROFITEST MBASE+ und PROFITEST MTECH+

				Eingangs-							Ans	schlüss	е		
Funk- tion	Messgröße	Anzeigebereich	Auf- lösung	impedanz/ Prüfstrom	Messbereich	Nennwerte	Betriebsmess- unsicherheit	Eigen- unsicherheit	Stecker- einsatz	2-Pol- Adapter	3-Pol- Adapter	Sonde		Zanger Z3512 A	
	U _{L-PE} U _{N-PE}	0 99,9 V 100 600 V	0,1 V 1 V		0,3 600 V ¹⁾		±(2% v.M.+5D) ±(2% v.M.+1D)	±(1% v.M.+5D) ±(1% v.M.+1D)	•	•	•				
	f	15,0 99,9 Hz 100 999 Hz	0,1 Hz 1 Hz		DC 15,4 420 Hz	U _N = 120/230/ 400/500 V	±(0,2% v.M.+1D)	±(0,1% v.M.+1D)							
U	U _{3~}	0 99,9 V 100 600 V	0,1 V 1 V	5 ΜΩ	0,3 600 V	$f_N = 16^2/_3/50/$	±(3% v.M.+5D) ±(3% v.M.+1D)	±(2% v.M.+5D) ±(2% v.M.+1D)			•				
	U _{SONDE}	0 99,9 V 100 600 V 0 99,9 V	0,1 V 1 V 0,1 V		1,0 600 V	60/200/400 Hz	±(2% v.M.+5D) ±(2% v.M.+1D) ±(3% v.M.+5D)	±(1% v.M.+5D) ±(1% v.M.+1D) ±(2% v.M.+5D)				•			
	U _{L-N}	100 600 V	1 V		1,0 600 V ¹⁾		±(3% v.M.+1D)	±(2% v.M.+1D)							
	U _{IΔN}	0 70,0 V	0,1 V	0,3 · I _{ΔN}	5 70 V	-	+10% v.M.+1D	+1% v.M.–1D +9% v.M.+1D							
		10 Ω 999 Ω 1,00 kΩ 6,51 kΩ		$I_{\Delta N} = 10 \text{ mA} \cdot 1,05$		U _N =									
	R _E	3 Ω 999 Ω 1 kΩ 2,17 kΩ 1Ω 651 Ω	1 Ω 0,01 kΩ 1Ω	$I_{\Delta N} = 30 \text{ mA} \cdot 1,05$ $I_{\Delta N} = 100 \text{ mA} \cdot 1,05$	Rechenwert aus	120 V 230 V									
	''E .	0,3 Ω 99,9 Ω 100 Ω 217 Ω	0,1 Ω 1 Ω	$I_{\Delta N} = 300 \text{ mA} \cdot 1,05$	$R_{E} = U_{I\Delta N} / I_{\Delta N}$	400 V ²⁾									
$I_{\Delta N}$		0,2 Ω 9,9 Ω 10 Ω 130 Ω	0,1 Ω 1 Ω	I _{ΔN} =500 mA · 1,05	•	$f_N = 50/60 \text{ Hz}$						•			
ļ.	$I_F (I_{\Delta N} = 6 \text{ mA})$	1,8 7,8 mA	0.4	1,8 7,8 mA	1,8 7,8 mA	$U_L = 25/50 \text{ V}$						wahl-			
lF_ 	$I_F (I_{\Delta N} = 10 \text{ mA})$ $I_F (I_{\Delta N} = 30 \text{ mA})$	3,0 13,0 mA 9,0 39,0 mA	0,1 mA	3,0 13,0 mA 9,0 39,0 mA	3,0 13,0 mA 9,0 39,0 mA	I _{ΔN} = 6 mA						weise			
	$I_F (I_{\Delta N} = 100 \text{ mA})$	30 130 mA	1 mA	30 130 mA	30 130 mA	10 mA	±(5% v.M.+1D)	±(3,5% v.M.+2D)							
	$I_F (I_{\Delta N} = 300 \text{ mA})$	90 390 mA	1 mA	90 390 mA	90 390 mA	30 mA 100 mA									
	$I_F (I_{\Delta N} = 500 \text{ mA})$	150 650 mA	1 mA	150 650 mA	150 650 mA	300 mA		10/ 11 15							
	$U_{ \Delta} / U_{L} = 25 \text{ V}$ $U_{ \Delta} / U_{I} = 50 \text{ V}$	0 25,0 V 0 50,0 V	0,1 V	wie I_{Δ}	0 25,0 V 0 50,0 V	500 mA ²⁾	+10% v.M.+1D	+1% v.M1D +9% v.M.+1 D							
	$t_A (I_{AN} \cdot 1)$	0 1000 ms	1 ms	6 500 mA	0 1000 ms	-		1070 1.111.1113							
	$t_A (I_{\Delta N} \cdot 2)$	0 1000 ms		2 · 6 2 · 500 mA	0 1000 ms	-	±4 ms	±3 ms							
	t _A (l _{∆N} · 5)	0 40 ms	1 ms	5 · 6 5 · 300 mA	0 40 ms										
	Z _{L-PE} () Z _{L-N}	$0 \dots 999 \ \mathrm{m}\Omega$ 1,00 \dots 9,99 Ω	1 mΩ		$0,15 \dots 0,49 \Omega$ $0,50 \dots 0,99 \Omega$ $1,00 \dots 9,99 \Omega$	400/500 V ¹⁾	±(10% v.M.+30D) ±(10% v.M.+30D) ±(5% v.M.+3D)								
	Z _{L-PE} + DC	0 999 mΩ 1,00 9,99 Ω	0,01 Ω 0,1 Ω	1,3 3,7 A AC	0,25 0,99 Ω 1,00 9,99 Ω	U _N = 120/230 V	±(18% v.M.+30D) ±(10% v.M.+3D)		-						
Z _{I -PF}	I _K (Z _{L-PE} —,	10,0 29,9 Ω 0 9,9 A	0,1 A	0,5/1,25 A DC	120 (108 132) V										
		10 999 A 1,00 9,99 kA	1 A 10 A		230 (196 253) V 400 (340 440) V		Rechenwer	t aus Z _{L-PE}		7					
Z_{L-N}	$Z_{L-PE} \longrightarrow + DC$	10,0 50,0 kA	100 A		500 (450 550) V					Z _{L-PE}					
	7 (45 1)	0,5 9,99 Ω	0,01 Ω			nur Anzeigebereich									
	Z _{L-PE} (15 mA)	10,0 99,9 Ω 100 999 Ω	0,1 Ω 1 Ω		10 100 Ω 100 1000 Ω	U _N = 120/230 V	±(10% v.M.+10D) ±(8% v.M.+2D)								
		100 999 mA	1 mA	15 mA AC	Rechenwert abh.	$f_N = 16^2 / \frac{1}{3} / 50 / 60$, ,								
	I _K (15 mA)	0,00 9,99 A 10,0 99,9 A	0,01 A 0,1 A		von U_N und Z_{L-PE} : $I_K=U_N/101000\Omega$	Hz	Rechenwert aus $I_K = U_N/Z_{L-}$	_{PE} (15 mA)							
	R _F (mit Sonde)	0 999 mΩ	1 mΩ		$0,15 \Omega 0,49 \Omega$ $0,50 \Omega 0,99 \Omega$		±(10% v.M.+30D)	±(5% v.M.+30D)							
	THE (THIL SOLIDE)	1,00 9,99 Ω	0,01 Ω	1,3 3,7 A AC	1,0 Ω9,99 Ω	$U_N = 120/230 \text{ V}$	±(10% v.M.+30D) ±(5% v.M.+3D)	±(4% v.Ivi.+30D) ±(3% v.M.+3D)							
	[R _E (ohne Sonde)	10,0 99,9 Ω 100 999 Ω	0,1 Ω 1 Ω	400 mA AC	10 Ω99,9 Ω	$U_N = 400 \text{ V}^{-1}$ $f_N = 50/60 \text{ Hz}$	±(10% v.M.+3D)	±(3% v.M.+3D)							
RE	Werte wie Z _{L-PE}]	1 kΩ 9,99 kΩ	0,01 kΩ	40 mA AC 4 mA AC	100 Ω999 Ω 1 kΩ9,99 kΩ	-IN 30700112	±(10% v.M.+3D) ±(10% v.M.+3D)								
	R _E DC+	0 999 mΩ 1,00 9,99 Ω	1 mΩ 0,01 Ω	1,3 3,7 A AC 0,5/1,25 A DC	0,25 0,99 Ω 1,00 9,99 Ω	U _N = 120/230 V f _N = 50/60 Hz		±(6% v.M.+50D)							
	U _F	10,0 29,9 Ω 0 253 V	0,1 Ω 1 V	— —	Rechenwert	- IN 30700 112	_(. 0 /0 V.W. 1 0D)	_()							
R _E	R _E	0 253 ν	1 mΩ		HOOHOHWEIL	siehe R _F	±(20% v.M.+20 D)	+(15% v M +20 D)							
Sel Zange	R _E DC+	0 999 Ω	1 Ω 1 mΩ	1,3 2,7 A AC 0,5/1,25 A DC	0,25 300 Ω ⁴⁾	U _N = 120/230 V	±(22% v.M.+20 D)	,							
EX-	Z _{ST}	0 30 ΜΩ	1 Ω 1 kΩ	2,3 mA bei 230 V	10 kΩ 199 kΩ	$f_{N} = 50/60 \text{ Hz}$ $U_{0} = U_{L-N}$	±(20% v.M.+2D)	±(10% v.M.+3D)		•	•	•			
TRA	481	0 00 IVI22	1 N2 Z	2,0 mm 001 200 V	200 kΩ 30 MΩ	00 - 0F-M	±(10% v.M.+2D)	±(5% v.M.+3D)	_	_	_	_			

PROFITEST MBASE+, MTECH+, MPRO, MXTRA, SECULIFE IP Prüfgeräte DIN VDE 0100/IEC 60364-6

Technische Kennwerte PROFITEST MBASE+ und PROFITEST MTECH+

				Eingangs-							Ans	chlüss	е		
Funk-	Messgröße	Anzeigebereich	Auf-	impedanz/	Messbereich	Nennwerte	Betriebsmess-	Eigen-	Stecker-	O Del	O Del		:	Zanger	1
tion	mooogrobo	7 ii i 201 gobororon	lösung	Prüfstrom	Modesoroidii	Homitorto	unsicherheit	unsicherheit	einsatz 1)	2-Pol- Adapter	3-Pol- Adapter	Sonde	WZ12 C	Z3512 A	MFLEX P300
		1 999 kΩ 1,00 9,99 MΩ 10,0 49,9 MΩ	1 kΩ 10 kΩ 100 kΩ			$U_{N} = 50 \text{ V}$ $I_{N} = 1 \text{ mA}$									
		1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ	1 kΩ 10 kΩ 100 kΩ			$\begin{array}{l} U_{N}=100 \text{ V} \\ I_{N}=1 \text{ mA} \end{array}$	Bereich kΩ ±(5% v.M.+10D)	Bereich kΩ ±(3% v.M.+10D)							
R _{ISO}	R _{ISO} , R _{E ISO}	1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ 100 200 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ	$I_K = 1,5 \text{ mA}$	50 kΩ 500 MΩ	$U_{N} = 250 \text{ V}$ $I_{N} = 1 \text{ mA}$	Bereich MΩ ±(5% v.M.+1D)	Bereich MΩ ±(3% v.M.+1D)	•	•					
		1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ 100 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ			$U_{N} = 500 \text{ V}$ $U_{N} = 1000 \text{ V}$ $I_{N} = 1 \text{ mA}$									
	U	10 999 V– 1,00 1,19 kV	1 V 10 V		10 1,19 kV		±(3% v.M.+1D)	±(1,5% v.M.+1D)							
R _{L0}	R_{LO}	0,01 Ω 9,99 Ω 10,0 Ω 199,9 Ω	$\begin{array}{c} 10 \text{ m}\Omega \\ 100 \text{ m}\Omega \end{array}$	$I_{\rm m} \ge 200 \text{ mA}$ $I_{\rm m} < 200 \text{ mA}$	0,1 Ω 5,99 Ω 6,0 Ω 100 Ω	$U_0 = 4,5 \text{ V}$	±(4% v.M.+2D)	±(2% v.M.+2D)		•					
		0 99,9 mA	0,1 mA		5 1000 mA ³⁾		±(10% v.M.+8D)	±(4% v.M.+7D)							
		100 999 mA	1 mA		3 1000 IIIA		±(10% v.M.+3D)	±(4% v.M.+2D)							
		0 99,9 A	0,1 A		5 150 A ³⁾		±(8% v.M.+2D)	±(3% v.M.+2D)							
		100 150 A	1 A		0 100 A		±(8% v.M.+1D)	±(3% v.M.+1D)							
		0 99,9 mA	0,1 mA				±(7% v.M.+8D)	±(4% v.M.+7D)							
		100 999 mA	1 mA		5 1000 mA ³⁾		±(5% v.M.+3D)	±(2% v.M.+2D)							
	I _{L/Amp}	1,0 9,99 A	0,01 A		0,05 10 A ³⁾		±(4% v.M.+2D)	±(2% v.M.+2D)							
SEN-	'L/Amp	10,0 99,9 A	0,1 A		0,5 100 A ³⁾		±(4% v.M.+2D)	±(2% v.M.+2D)							
SOR		100 999 A	1 A		5 1000 A ³⁾		±(4% v.M.+1D)	±(2% v.M.+1D)							
		1,00 1,02 kA	0,01 kA				±(4% v.M.+1D)	±(2% v.M.+1D)							
		0 99,9 mA	0,1 mA	1 V/A	30 1000 mA ³⁾⁾	U _N = 120/230/	±(7% v.M.+100D)	,							
		100 999 mA	1 mA			400 V	±(6% v.M.+12D)	,							
		1,0 9,99 A	0,01 A	100 mV/A	0,3 10 A ³⁾	$f_N = 50/60 \text{ Hz}$	±(6% v.M.+12D)	. ,							
		10,0 99,9 A	0,1 A	10 mV/A	3 100 A ³⁾	14	±(5% v.M.+11D)	, ,							
	Uez	0,0 99,0 mV	0,1 mV	400 kΩ	1000 mV		±(3% v.M.+2D)	±(2% v.M.+2D)							
	002	100 999 mV	1 mV	700 1/22	10001111		±(3% v.M.+1D)	±(2% v.M.+1D)							

¹⁾ U > 230 V nur mit 2- bzw. 3-Pol-Adapter

 $\textbf{Legende:} \ \mathsf{D} = \mathsf{Digit}, \ \mathsf{v.} \ \mathsf{M.} = \mathsf{vom} \ \mathsf{Messwert}$

¹⁰ V > 230 V Nur mit 2- DZw. 3-POI-Auaprel 2) 1. $V > 1\Delta N > 300$ mA nur bis $V_N \le 230$ V! 1. $\Delta N \le 10$ mA nur mit $V_N = 230$ V! 1. $\Delta N \le 10$ mA nur mit $V_N = 230$ V 3. $\Delta N \le 10$ mA nur mit $V_N = 230$ V 1. $\Delta N \ge 10$ mA nur mit $V_N = 230$ V 1. $\Delta N \ge 10$ mA nur mit $V_N = 230$ M 1. $\Delta N \ge 10$ mA nur mit $V_N = 230$ M 1. $\Delta N \ge 10$ mA nur mit $V_N = 230$ M 1. $\Delta N \ge 10$ mA nur mit $V_N = 230$ M 1.

⁴⁾ bei R_{Eselektiv}/R_{Egesamt} < 100

PROFITEST MBASE+, MTECH+, MPRO, MXTRA, SECULIFE IP Prüfgeräte DIN VDE 0100/IEC 60364-6

Technische Kennwerte PROFITEST MPRO, MXTRA und SECULIFE IP

				Finance and							Ans	schlüss	е		
Funk- tion	Messgröße	Anzeigebereich	Auf- lösung	Eingangs- impedanz/ Prüfstrom	Messbereich	Nennwerte	Betriebsmess- unsicherheit	Eigen- unsicherheit	Stecker- einsatz	2-Pol- Adapter	3-Pol-	Sonde		Zanger Z3512A	
	U _{L-PE}	0 99,9 V	0,1 V		0,3 600 V ¹⁾		±(2% v.M.+5D)	±(1% v.M.+5D)							
	U _{N-PE}	100 600 V	1 V		0,5 000 v	$U_N =$	±(2% v.M.+1D)	±(1% v.M.+1D)							
	f	15,0 99,9 Hz	0,1 Hz		DC 15,4 420 Hz	120 V	±(0,2% v.M.+1D)	±(0,1% v.M.+1D)							
		100 999 Hz	1 Hz		,	230 V	, , ,	, , ,							
U	U _{3~}	0 99,9 V 100 600 V	0,1 V 1 V	$5~\mathrm{M}\Omega$	0,3 600 V	400 V 500 V	±(3% v.M.+5D) ±(3% v.M.+1D)	±(2% v.M.+5D) ±(2% v.M.+1D)							
	-	0 99,9 V	0,1 V			300 V	±(2% v.M.+5D)	±(1% v.M.+5D)				_	-		
	U _{SONDE}	100 600 V	1 V		1,0 600 V	$f_N = 16^2 / \frac{3}{50}$	±(2% v.M.+1D)	±(1% v.M.+1D)							
		0 99,9 V	0,1 V		4.0 000.4.1)	60/200/400 Hz	±(3% v.M.+5D)	±(2% v.M.+5D)		-					
	U_{L-N}	100 600 V	1 V		1,0 600 V ¹⁾		±(3% v.M.+1D)	±(2% v.M.+1D)							
	U _{IAN}	0 70,0 V	0,1 V	0,3 · I _{AN}	5 70 V		+10% v.M.+1D	+1% v.M1D							
	ΟΙΔΝ			0,5 іду	3 70 V		+10/0 V.WI.+1D	+9% v.M.+1D							
		10 Ω 999 Ω	1Ω	$I_{\Delta N} = 10 \text{ mA} \cdot 1,05$											
		1,00 kΩ 6,51 kΩ	0,01 kΩ 1 Ω			U _N =									
		3 Ω 999 Ω 1 kΩ 2,17 kΩ	0,01 kΩ	$I_{\Delta N} = 30 \text{ mA} \cdot 1,05$	Rechenwert	120 V									
	R _E	1Ω 651 Ω	1Ω	I _{AN} =100 mA · 1,05	aus	230 V									
	''E	0,3 Ω 99,9 Ω	0,1 Ω		D II /I	400 V ²⁾									
		100 Ω 217 Ω	1Ω	I _{ΔN} =300 mA · 1,05	L JAN AN	f _N = 50/60 Hz									
١. ا	,	0,2 Ω 9,9 Ω	0,1 Ω	I 500 m/ 1 05		IN - 30/00 HZ									
$I_{\Delta N}$		10 Ω 130 Ω	1 Ω	I _{ΔN} =500 mA · 1,05		$U_1 = 25/50 \text{ V}$									
	$I_F (I_{\Delta N} = 6 \text{ mA})$	1,8 7,8 mA	1	1,8 7,8 mA	1,8 7,8 mA	1						wahl-			
IF	$I_F (I_{\Delta N} = 10 \text{ mA})$	3,0 13,0 mA	0,1 mA	3,0 13,0 mA	3,0 13,0 mA	$I_{\Delta N} =$						weise			
	$I_F (I_{\Delta N} = 30 \text{ mA})$	9,0 39,0 mA	4 . 4	9,0 39,0 mA	9,0 39,0 mA	6 mA	±(5% v.M.+1D)	±(3,5%							
	$I_F (I_{\Delta N} = 100 \text{ mA})$	30 130 mA	1 mA	30 130 mA	30 130 mA	10 mA 30 mA	,	v.M.+2D)							
	$I_F (I_{\Delta N} = 300 \text{ mA})$	90 390 mA	1 mA	90 390 mA	90 390 mA	100 mA									
	$I_F (I_{\Delta N} = 500 \text{ mA})$ $U_{IA} / U_{I} = 25 \text{ V}$	150 650 mA 0 25,0 V	1 mA	150 650 mA	150 650 mA 0 25,0 V	300 mA		+1% v.M1D							
	$U_{l\Delta} / U_{L} = 50 \text{ V}$	0 50,0 V	0,1 V	wie I $_{\Delta}$	0 50,0 V	500 mA ²⁾	+10% v.M.+1D	+1% v.wi1D +9% v.M.+1 D							
	$t_A (l_{\Delta N} \cdot 1)$	0 1000 ms	1 ms	6 500 mA	0 1000 ms	-		+3/0 V.IVI.+1 D							
	t _A (l _{ΔN} · 2)	0 1000 ms		2 · 6 2 · 500 mA			±4 ms	±3 ms							
	t _A (l _{ΔN} · 5)	0 40 ms		5 · 6 5 · 300 mA		1									
		0 999 mΩ			0,10 0,49 Ω	U _N = 120/230 V	±(10% v.M.+20D)	±(5% v.M.+20D)							
	Z_{L-PE} (\bigcirc) Z_{L-N}	1,00 9,99 Ω	1 mΩ	3,7 4,7 A AC	$0,50 \dots 0,99 \Omega$	400/500 V ¹⁾	±(10% v.M.+20D)	±(4% v.M.+20D)							
	Z-L-N		0,01 Ω		1,00 9,99 Ω	$f_N = 16^2 / \frac{3}{50} / 60 \text{ Hz}$	±(5% v.M.+3D)	±(3% v.M.+3D)							
	Z _{I-PF}	0 999 mΩ	0,1 Ω	3,7 4,7 A AC	0,25 0,99 Ω	U _N = 120/230 V	±(18% v.M.+30D)	±(6% v.M.+50D)							
	Z _{L-PE} + DC	1,00 9,99 Ω 10,0 29,9 Ω		0,5/1,25 A DC	1,00 9,99 Ω	$f_N = 50/60 \text{ Hz}$	±(10% v.M.+3D)	±(4% v.M.+3D)							
_		0 9,9 A	0,1 A		120 (108 132) V	,									
L-PE	$I_K (Z_{L-PE} $	10 999 A	1 A		230 (196 253) V		Daabaaaaa	± 7							
,	Z _{L-PE} + DC)	1,00 9,99 kA	10 A		400 (340 440) V	,	Rechenwer	t aus Z _{L-PE}		Z _{L-PE}					
L-N	2L-PE + 00)	10,0 50,0 kA	100 A		500 (450 550) V					Lite					
	Z _{I-PF} (15 mA)	0,5 99,9 Ω	0,1 Ω		10 100 Ω		±(10% v.M.+10D)								
	ZL-PE (10 1111)	100 999 Ω	1Ω		100 1000 Ω	U _N = 120/230 V	±(8% v.M.+2D)	±(1% v.M.+1D)							
		0,10 9,99 A	0,01 A	15 mA AC	100 mA 12 A (U _N = 120 V)	$f_N = 16^2 /_3 / 50 /$	Recheny	vort auc							
	I _K (15 mA)	10,0 99,9 A	0,1 A		200 mA 25 A	60 Hz	$I_K = U_N/Z_{I-}$								
		100 999 A ¹⁴⁾	1 A		$(U_N = 230 \text{ V})$		'K 9 4/2-L-	PE (10 1111)							
		0 000 =0	1 mO	27 47440	0,10 Ω 0,49 Ω		±(10% v.M.+20D)	±(5% v.M.+20D)							
	R _{E,sl} (ohne Sonde)	$0 999 \text{m}\Omega$ $1,00 9,99 \Omega$	$1 \text{ m}\Omega$ $0,01 \Omega$	3,7 4,7 A AC 3,7 4,7 A AC	$0,50~\Omega~~0,99~\Omega$		±(10% v.M.+20D)	±(4% v.M.+20D)							
	E.SI (STITIO GOTIGE)	10,0 99,9 Ω	0,01 Ω	400 mA AC	1,0 Ω9,99 Ω	1)	±(5% v.M.+3D)	±(3% v.M.+3D)							
	R _E (mit Sonde)	100 999 Ω	1Ω	40 mA AC	10 Ω99,9 Ω 100 Ω999 Ω	$f_N = 50/60 \text{ Hz}$	±(10% v.M.+3D) ±(10% v.M.+3D)								
		1 kΩ 9,99 kΩ	0,01 kΩ	4 mA AC	1 kΩ9,99 kΩ		±(10% v.M.+3D)								
	R _{E (15 mA)}														
R _E	TE (ISTIIA)	0,5 99,9 Ω	0,1 Ω	15 mA AC	10 Ω99,9 Ω	$U_N = 120/230 \text{ V}$									
-	(ohne/mit Sonde)	100 999 Ω	1 Ω		100 Ω999 Ω	$f_N = 50/60 \text{ Hz}$	±(8% v.M.+2D)	±(1% v.M.+1D)							
	R _{E.sl} (ohne Sonde)	0 999 mΩ	1 mΩ												
	+ DC	1,00 9,99 Ω	0,01 Ω	3,7 4,7 A AC	0,25 0,99 Ω		±(18% v.M.+30D)								
	R _{E.sl} (mit Sonde)	10,0 29,9 Ω	0,1 Ω	0,5/1,25 A DC	1,00 9,99 Ω	$f_N = 50/60 \text{ Hz}$	±(10% v.M.+3D)	±(4% V.IVI.+3D)							
	+ DC					U _N = 120/230 V									
	U _E	0 253 V	1 V	3,7 4,7 A AC	$R_E = 0,10 9,99 \Omega$	$f_N = 50/60 \text{ Hz}$	Rechenwert U _E	$= U_N \cdot R_E / R_{E.sl}$							
	R- ·	0 999 mΩ	1 mΩ	2,1 A AC											
	R _{E.sel}	1,00 9,99 Ω	0,01 Ω	2,1 A AC	0,25 300 Ω ⁴⁾	$U_N = 120/230 \text{ V}$	±(20% v.M.+20 D)	±(15% v.M +20 D)							
R _E	(nur mit Sonde)	10,0 99,9 Ω	0,1 Ω	400 mA AC	0,20 000 22	$f_N = 50/60 \text{ Hz}$	±(20 % 4.W. 120 D)	±(1070 V.W. 120 D)							
Sel	,	100 999 Ω	1 Ω	40 mA AC											
Zange	R _{E.sel}	$0 999 \text{m}\Omega$ 1,00 9,99 Ω	$1 \text{ m}\Omega$ $0,01 \Omega$	3,7 4,7 A AC	0,25 300 Ω	U _N = 120/230 V									
	+ DC	10,0 99,9 Ω	0,01 Ω	0,5/1,25 A DC	$R_{E,qes} < 10 \Omega^{4}$	$f_N = 50/60 \text{ Hz}$	±(22% v.M.+20 D)	±(15% v.M.+20 D)							
	(nur mit Sonde)	100 999 Ω	1Ω	, , ,	L.you	1 22.001.2									
EXTRA	Z _{ST}	0 30 MΩ	1 kΩ	2,3 mA bei 230 V	10 kΩ 199 kΩ	$U_0 = U_{L-N}$	±(20% v.M.+2D)								
	-51	5 50 W22	1 1/22	_,5 11# (DOI 200 V	200 kΩ 30 MΩ	00 - 0L-N	±(10% v.M.+2D)	±(5% v.M.+3D)	_	_	_				

PROFITEST MBASE+, MTECH+, MPRO, MXTRA, SECULIFE IP Prüfgeräte DIN VDE 0100/IEC 60364-6

				Eingangs-							Ans	chlüss	е		
Funk- tion	Messgröße	Anzeigebereich	Auf- lösung	impedanz/ Prüfstrom	Messbereich	Nennwerte	Betriebsmess- unsicherheit	Eigen- unsicherheit	Stecker- einsatz	2-Pol- Adapter	3-Pol- Adapter	Sonde	WZ12C	Zanger Z3512A	
EXTRA	IMD-Test	20 648 kΩ 2,51 MΩ	1 kΩ 0,01 MΩ	IT-Netzspannung U.it = 90 550 V	20 kΩ 199 kΩ 200 kΩ 648 kΩ 2,51 MΩ	IT-Netz-Nenn- spanungen UN.it = 120/230/400/ 500 V f _N = 50/60 Hz	±7% ±12% ±3%	±5% ±10% ±2%	•		•				
		1 999 kΩ 1,00 9,99 MΩ 10,0 49,9 MΩ	1 kΩ 10 kΩ 100 kΩ			$U_{N} = 50 \text{ V}$ $I_{N} = 1 \text{ mA}$									
		1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ	1 kΩ 10 kΩ 100 kΩ			$U_{N} = 100 \text{ V}$ $I_{N} = 1 \text{ mA}$	Bereich kΩ ±(5% v.M.+10D)	Bereich kΩ ±(3% v.M.+10D)							
R _{ISO}	R_{ISO} , R_{EISO}	1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ 100 200 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ	I _K = 1,5 mA	50 kΩ 500 MΩ	$U_{N} = 250 \text{ V}$ $I_{N} = 1 \text{ mA}$	Bereich MΩ ±(5% v.M.+1D)	Bereich M Ω ±(3% v.M.+1D)	•	•					
		1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ 100 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ			$U_N = 500 \text{ V}$ $U_N = 1000 \text{ V}$ $I_N = 1 \text{ mA}$									
	U	10 999 V– 1,00 1,19 kV	1 V 10 V		10 1,19 kV		±(3% v.M.+1D)	±(1,5% v.M.+1D)	-						
R _{L0}	R _{LO}	0,01 Ω 9,99 Ω 10,0 Ω 199,9 Ω	10 mΩ 100 mΩ	I _m ≥ 200 mA I _m < 200 mA	0,1 Ω 5,99 Ω 6,0 Ω 100 Ω	$U_0 = 4,5 \text{ V}$	±(4% v.M.+2D)	±(2% v.M.+2D)							
		0 99,9 mA 100 999 mA 0 99,9 A 100 150 A	0,1 mA 1 mA 0,1 A		5 1000 mA ³⁾ 5 150 A ³⁾		±(10% v.M.+8D) ±(10% v.M.+3D) ±(8% v.M.+2D) ±(8% v.M.+1D)	±(4% v.M.+7D) ±(4% v.M.+2D) ±(3% v.M.+2D) ±(3% v.M.+1D)					•		
SEN-	I _{L/Amp}	0 99,9 mA 100 999 mA 1,0 9,99 A 10,0 99,9 A	0,1 mA 1 mA 0,01 A 0,1 A		5 1000 mA ³⁾ 0,05 10 A ³⁾ 0,5 100 A ³⁾ 5 1000 A ³⁾		±(7% v.M.+8D) ±(5% v.M.+3D) ±(4% v.M.+2D) ±(4% v.M.+2D)	±(4% v.M.+7D) ±(2% v.M.+2D) ±(2% v.M.+2D) ±(2% v.M.+2D)						•	
SOR		100 999 A 1,00 1,02 kA	1 A 0,01 kA				±(4% v.M.+1D) ±(4% v.M.+1D)	±(2% v.M.+1D) ±(2% v.M.+1D)							
		0 99,9 mA 100 999 mA 1,0 9,99 A	0,1 mA 1 mA 0,01 A	1 V/A 100 mV/A	30 1000 mA ³⁾	$U_N = 120/230/400 \text{ V}$ $f_N = 50/60 \text{ Hz}$	±(7% v.M.+100D) ±(6% v.M.+12D) ±(6% v.M.+12D)	±(3% v.M.+12D) ±(3% v.M.+12D)							•
	11	10,0 99,9 A 0,0 99,0 mV	0,1 A 0,1 mV	10 mV/A	3 100 A ³⁾	14	±(5% v.M.+11D) ±(3% v.M.+2D)	±(2% v.M.+11D) ±(2% v.M.+2D)							
	Uez	100 999 mV	1 mV	400 kΩ	1000 mV		±(3% v.M.+1D)	±(2% v.M.+1D)							

¹⁾ U > 230 V nur mit 2- bzw. 3-Pol-Adapter

Sonderfunktion PROFITEST MPRO, MXTRA

		A.ı.f	Prüfstrom/		Patriahamasa	Eigen		Ansch	lüsse	
Messgröße	Anzeigebereich	lösung	Signalfrequenz 5)	Messbereich	unsicherheit	unsicherheit			Stromz Z3512A	angen Z591B
RE 3-Pol	0,00 9,99 Ω 10,0 99,9 Ω	0,01 Ω 0,1 Ω	16 mA/128 Hz 1,6 mA/128 Hz	1,00 Ω 19,9 Ω 5,0 Ω 199 Ω	±(10% v.M.+10D) + 1 Ω	±(3% v.M.+5D) + 0,5 Ω				
RE 4-Pol	100 999 Ω 1,00 9,99 kΩ 10,0 50,0 kΩ	0,01 kΩ	0,16 mA/128 Hz	$50 \Omega 1,99 kΩ$ 0,50kΩ 19,9kΩ 0,50kΩ 49,9kΩ	±(10% v.M.+10D)	±(3% v.M.+5D)	6)			
RE 4-Pol selektiv mit Messzange	$\begin{array}{c} 0,00 \dots 9,99 \ \Omega \\ 10,0 \dots 99,9 \ \Omega \\ 100 \dots 999 \ \Omega \\ 1,00 \dots 9,99 \ k\Omega \\ 10,0 \dots 19,9 \ k\Omega \end{array}$ $\begin{array}{c} 15,00 \dots 10,00 \ \dots 10,0$	0,1 kΩ	0,16 mA/128 Hz	1,00 Ω 9,99 Ω 10,0 Ω 200 Ω					9)	
RE spez (p)	0,0 9,9 Ωm 100 999 Ωm 1,00 9,99 kΩm			100 Ω m 9,99 $k\Omega$ m ¹² /500 Ω m 9,99 $k\Omega$ m ¹² /5,00 $k\Omega$ m 9,99 $k\Omega$ m ¹³ /	±(20% v.M.+10D)	±(12% v.M.+10D)	6)			
Sondenabstand d (p)	0,1 999 m									
RE 2-Zangen	0,00 9,99 Ω 10,0 99,9 Ω 100 999 Ω 1,00 1,99 kΩ	0,01 Ω 0,1 Ω 1 Ω 0.01 kΩ	30 V / 128 Hz	0,10 9,99 Ω 10,0 99,9 Ω				7)	9)	8)
	RE 3-Pol RE 4-Pol RE 4-Pol selektiv mit Messzange RE spez (p) Sondenabstand d (p)	RE 3-Pol 0,00 9,99 Ω 10,0 999 Ω 10,0 19,9 ΚΩ 15) 10,0 49,9 ΚΩ 16) RE spez (p) 0,0 999 Ωm 10,0 990 Ωm 10,0 990 Ωm 10,0 90 Ωm 10,0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Messgröße Anzeigebereich flösung Signalfrequenz 5) Messbereich Signalfrequenz 5) Messbereich unsicherheit unsicherheit Eigen unsicherheit unsicherheit Adapter für Prüfstecker PRO-RE PRO-RE/2 RE 3-Pol 0,00 9,99 Ω 10,0 9,99 Ω 10,0 9,99 Ω 10 1,00 9,99 Ω 10 1,6 mA/128 Hz 1,6 mA/128 Hz 10,0 1,99 kΩ 110,0 9,99 kΩ 10,0 1,6 mA/128 Hz 10,0 9,99 Ω 10,0 9,99 Ω 10,1 Ω 1,6 mA/128 Hz 10,0 9,99 Ω m 10,0 9,99 Ω 10,0 9,99 Ω 10,0 9,99 Ω m 10,0	Messgröße Anzeigebereich lösung Signalfrequenz 5 (s) Messbereich (sound) Betriebsmess unsicherheit unsicherheit unsicherheit unsicherheit Adapter für Prüfstecker PRO-RE PRO-RE/2 Z3512A Stromz 780 (mischerheit unsicherheit Adapter für Prüfstecker PRO-RE PRO-RE/2 Z3512A Z3512A RE 3-Pol 0.00 9.99 Ω 100 99.9 Ω (100 99.9 Ω (100 99.9 Ω) 0.1 Ω (16 mA/128 Hz 16 mA/128 Hz 100 99.9 Ω (100 99.9 Ω 10.0 Ω (16 mA/128 Hz 10.0 Ω 9.99 Ω 10.0 Ω (16 mA/128 Hz 10.0 Ω 9.99 Ω 10.0 Ω (16 mA/128 Hz 10.0 Ω 9.99 Ω (10.0 Ω 9.99 Ω 10.0 Ω 9.99 Ω (10.0 Ω 9.99 Ω 10.0 Ω 9.99 Ω

⁵⁾ Signalfrequenz ohne Störsignal

Legende: D = Digit, v. M. = vom Messwert

 $^{1 \}times 230 \text{ V Hui Hill } 2^{-1} \text{ DZW}$. $3^{-1} \text{ U} = 10^{-1} \text{ Aug} \text{TeV}$ and $1 \times 10^{-1} \text{ U} = 10$

⁴⁾ bei R_{Eselektiv}/R_{Egesamt} < 100

Signalfrequenz ohne Störsignal
 Adapterkabel PRO-RE (Z501S) für Prüfstecker zum Anschluss der Erdsonden (E-Set 3/4)
 Adapterkabel PRO-RE/2 für Prüfstecker zum Anschluss der Generatorzange E-CLIP2
 Generatorzange: E-CLIP2 (Z591B)
 Messzange: Z3512A (Z225A)
 bei RE.sel/RE < 10 oder Messzangenstrom > 500 μA
 bei RE.H/RE ≤ 100 und RE.E/RE ≤ 100

 $^{^{13)}}$ bei d = 2 m

 $[\]begin{array}{l} ^{12)} \text{bei d} = 20 \text{ m} \\ ^{14)} \text{bei Z}_{\text{L-PE}} < 0.5 \ \Omega \text{ wird I}_{\text{k}} > \text{U}_{\text{N}} / 0.5 \ \Omega \text{ angezeigt} \\ ^{15)} \text{nur bei RANGE} = 20 \ \text{k}\Omega \\ ^{16)} \text{nur bei RANGE} = 50 \ \text{k}\Omega \text{ oder AUTO} \\ \end{array}$

Prüfgeräte DIN VDE 0100/IEC 60364-6

Kennwerte PROFITEST MASTER

Referenzbedingungen

 $230 \text{ V} \pm 0.1 \%$ Netzspannung $50 \text{ Hz} \pm 0.1 \%$ Netzfrequenz Frequenz der Messgröße 45 Hz ... 65 Hz

Kurvenform d. Messgröße Sinus (Abweichung zwischen Effektiv-

und Gleichrichtwert ≤ 0,1 %)

Netzimpedanzwinkel $\cos \varphi = 1$ $\leq 10 \Omega$ Sondenwiderstand $12 V \pm 0.5 V$ Versorgungsspannung Umgebungstemperatur + 23 °C ± 2 K Relative Luftfeuchte 40% ... 60%

Fingerkontakt bei Prüfung Potenzialdifferenz

> auf Erdpotenzial rein ohmsch

Stromversorgung

Standortisolation

Akkus 8 Stück AA 1,5 V,

wir empfehlen, ausschließlich den mitgelieferten Akkupack zu verwenden

(Akkupack Artikelnr. Z502H)

Anzahl der Messungen (Standard-Setup mit Beleuchtung) 1 Messung – 25 s Pause:

– bei R_{ISO} ca. 1100 Messungen

- bei R_{I O} Auto-Umpolung/1 Ω

(1 Messzyklus) – 25 s Pause:

ca. 1000 Messungen

Akkutest symbolische Anzeige der Akku-

spannung BAT

Akkusparschaltung Die Anzeigebeleuchtung ist abschaltbar.

> Das Prüfgerät schaltet sich nach der letzten Tastenbetätigung automatisch ab. Die Einschaltdauer kann vom Anwender selbst gewählt werden.

Sicherheitsabschaltung Das Gerät schaltet bei zu niedriger Ver-

sorgungsspannung ab bzw. kann nicht

eingeschaltet werden.

Ladebuchse Eingelegte Akkus können durch

Anschluss eines Ladegeräts an die Ladebuchse direkt aufgeladen werden:

Ladegerät Z502R

Ladezeit Ladegerät Z502R:

ca. 2 Stunden *

Ein Timer im Ladegerät begrenzt die Ladezeit auf maximal 4 Stunden

Überlastbarkeit

1200 V dauernd R_{ISO} U_{L-PE} , U_{L-N} 600 V dauernd RCD, R_E, R_F 440 V dauernd

 Z_{L-PE}, Z_{L-N} 550 V (begrenzt die Anzahl der Messungen und Pausenzeit, bei Überlastung schaltet ein

Thermo-Schalter das Gerät ab.)

 R_{LO} Elektronischer Schutz verhindert das Einschalten, wenn Fremdspannung anliegt.

Schutz durch

Feinsicherungen FF 3,15 A 10 s,

> 5 A - Auslösen der Sicherungen

Elektrische Sicherheit

Schutzklasse II nach IEC 61010-1/EN 61010-1/

VDE 0411-1

Nennspannung 230/400 V (300/500 V)

Prüfspannung 3.7 kV 50 Hz

Messkategorie CAT III 600 V bzw. CAT IV 300 V

Verschmutzungsgrad

Sicherungen

je 1 G-Schmelzeinsatz Anschluss L und N

FF 3,15/500G 6,3 mm x 32 mm

Elektromagnetische Verträglichkeit EMV

Dradulatnarm EN 61006 1,0006

Produktnorm	EN 61326-1:20	JU6
Störaussendung		Klasse
EN 55022		A
Störfestigkeit	Prüfwert	Leistungsmerkmal
EN 61000-4-2	Kontakt/Luft - 4 kV/8 kV	
EN 61000-4-3	10 V/m	
EN 61000-4-4	Netzanschluss - 2 kV	
EN 61000-4-5	Netzanschluss - 1 kV	
EN 61000-4-6	Netzanschluss - 3 V	
EN 61000-4-11	0,5 Periode / 100%	

Umgebungsbedingungen

0 ... + 40 °C Genauigkeit -5 ... + 50 °C **Betrieb**

-20 ... + 60 °C (ohne Akkus) Lagerung relative Luftfeuchte max. 75%, Betauung ist auszuschließen

Höhe über NN max. 2000 m

Mechanischer Aufbau

Anzeige Mehrfachanzeige mittels Punktmatrix

128 x 128 Punkte

Abmessungen BxLxT = 260 mm x 330 mm x 90 mm

Gewicht ca. 2,7 kg mit Akkus

Gehäuse IP 40, Prüfspitze IP 40 nach Schutzart

EN 60529/DIN VDE 0470 Teil 1

Datenschnittstellen

Тур USB-Slave für PC-Anbindung RS232 für Barcode- und RFID-Leser Тур Bluetooth® für PC-Anbindung Тур (nur PROFITEST MTECH+/MXTRA/

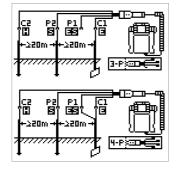
SECULIFE IP)

maximale Ladezeit bei vollständig entladenen Akkus.

Prüfgeräte DIN VDE 0100/IEC 60364-6

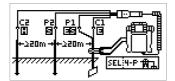
Lieferumfang

- 1 Prüfgerät
- 1 Schutzkontaktstecker-Einsatz (länderspezifisch)
- 1 2-Pol-Messadapter und
 - 1 Leitung zur Erweiterung zum 3-Pol-Adapter (PRO-A3-II)
- 2 Krokodilklemmen
- 1 Umhängegurt
- 1 Satz Akkus (Z502H)
- 1 Ladegerät Z502R
- 1 Kurzbedienungsanleitung
- Beiblatt Sicherheitsinformationen
- Ausführliche Bedienungsanleitung im Internet zum Download unter www.gossenmetrawatt.com
- 1 DAkkS-Kalibrierschein
- USB-Schnittstellenkabel


Sonderfunktionen mit PROFITEST MPRO und PROFITEST MXTRA

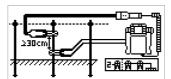
Batteriebetriebene "Akkubetrieb" Erdungswiderstandsmessungen

Erdungswiderstand R_E

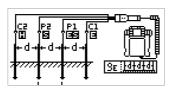

3-Pol-Messverfahren Sonden und Erder über Adapter PRO-RE angeschlossen

4-Pol-Messverfahren Sonden und Erder über Adapter PRO-RE angeschlossen

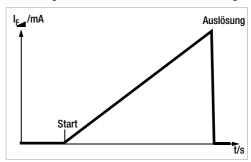
Selektiver Erdungswiderstand R_F


(4-Pol-Messverfahren)
Zangenstromsensor direkt,
Sonden und Erder über Adapter
PRO-RE angeschlossen

Erdschleifenwiderstand R_{ESCHL}


2-Zangen-Messung: Zangenstromsensor direkt angeschlossen,

Zangenstromswandler über Adapter PRO-RE/2 angeschlossen


Spezifischer Erdwiderstand Rho

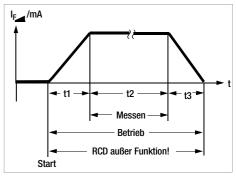
Sonden über Adapter PRO-RE angeschlossen

Sonderfunktionen mit PROFITEST MTECH+ und PROFITEST MXTRA

Auslöseprüfung bei allstromsensitiven RCDs vom Typ B 🖂 💳 mit ansteigendem Gleichfehlerstrom und Messung des Auslösestroms

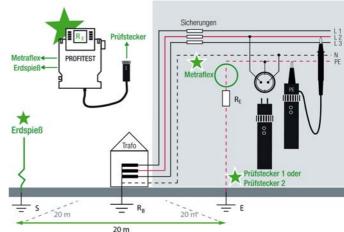
In der Schalterstellung I_F fließt ein langsam ansteigender Gleichstrom über N und PE. Der aktuelle Strommesswert wird hierbei ständig angezeigt. Bei Auslösung des RCD-Schalters

wird der zuletzt gemessene Strom angezeigt. Bei verzögerten Schaltern (Typ [S]) wird mit stark verringerter Anstiegsrate gemessen.


Auslöseprüfung bei allstromsensitiven RCDs vom Typ B 🖂 🥅 mit konstantem Gleichfehlerstrom und Messung der Auslösezeit

In der Schalterstellung des jeweiligen Nennfehlerstroms fließt der jeweils doppelte Nennstrom über N und PE. Die Zeit bis zum Auslösen des RCD-Schalters wird gemessen und angezeigt.

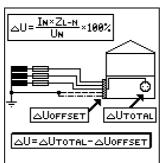
Schleifenimpedanzmessung durch Unterdrückung der RCD-Auslösung


Die Prüfgeräte ermöglichen die Messung der Schleifenimpedanz in TN-Netzen mit RCD-Schaltern vom Typ A, F ⊠ und AC (10/30/100/300/500 mA Nennfehlerstrom).

Das jeweilige Prüfgerät erzeugt hierzu einen Gleichfehlerstrom, der den magnetischen Kreis des RCD-Schalters in Sättigung bringt. Mit dem Prüfgerät wird dann ein Messstrom überlagert, der nur Halbwellen der gleichen Polarität besitzt. Der RCD-Schalter

kann diesen Messstrom dann nicht mehr erkennen und löst folglich während der Messung nicht mehr aus.

Selektive Erdungswiderstandsmessung (netzbetrieben)

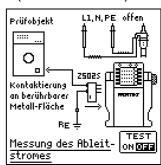

Prüfgeräte DIN VDE 0100/IEC 60364-6

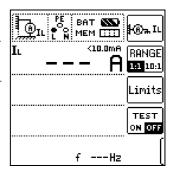
Sonderfunktionen

Spannungsfall-Messung (bei Z_{LN}) – Funktion ∆U

Der Spannungsfall vom Schnittpunkt zwischen Verteilungsnetz und Verbraucheranlage bis zum Anschlusspunkt eines elektrischen Verbrauchsmittels (Steckdose oder Geräteanschlussklemme) soll nach DIN VDE 100 Teil 600 nicht größer als 4% der Nennspannung des Netzes sein. Berechnung des Spannungsfalls: $\Delta U = Z_{L-N} \bullet \text{Nennstrom der Sicherung}$

 ΔU in % = ΔU / $U_{L\text{-}N}$

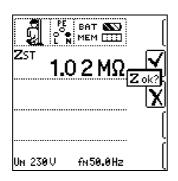

Sonderfunktionen PROFITEST MXTRA


Ableitstrommessung mit Adapter PRO-AB (nur PROFITEST MXTRA)

Die Messung von dauernd flie-Benden Ableit- und Patientenhilfsströmen gemäß IEC 62353 (VDE 0750 Teil 1) / IEC 601-1 / EN 60 601-1:2006 (Medizinische elektrische Geräte – Allgemeine Festlegungen für die Sicherheit) ist mit dem Zubehör Ableitstrommessadapter PRO-AB als Vorschaltgerät für das Prüfgerät PROFITEST MXTRA möglich.

Gemäß o. g. Vorschriften sind mit diesem Messadapter Ströme bis zu 10 mA zu messen.

Um diesen Strommessbereich vollständig mit dem am Prüfgerät vorhandenen Messeingang (zweipoliger Zangenmesseingang) abdecken zu können, verfügt das Messgerät über eine Bereichsumschaltung mit den Übertragungsverhältnissen 10:1 und 1:1.



Messen der Impedanz isolierender Fußböden und Wände (Standortisolationsimpedanz) – Funktion Z_{ST}

Das Gerät misst die Impedanz zwischen einer belasteten Metallplatte und der Erde. Als Wechselspannungsquelle wird die am Messort vorhandene Netzspannung verwendet. Die Ersatzschaltung von Z_{ST} wird als Parallelschaltung betrachtet.

Prüfen von Isolationsüberwachungsgeräten (IMDs) (nur PROFITEST MXTRA und SECULIFE IP)

Isolationswächter werden in Stromversorgungen eingesetzt, bei denen ein einpoliger Erdschluss nicht zum Ausfall der Stromversorgung führen darf z. B. bei Operationssälen oder Photovoltaikanlagen.

Die Isolationswächter können mithilfe dieser Sonderfunktion überprüft werden. Hierzu wird ein einstellbarer Isolationswiderstand nach Drücken der Taste START zwischen eine der zwei Phasen

des zu überwachenden IT-Netzes und Erde geschaltet. Der Widerstand kann während der Prüfung in der Betriebsart manueller Ablauf über Softkey-Tasten verändert oder in der Betriebsart "AUTO" automatisch von $\rm R_{max}$ bis $\rm R_{min}$ variiert werden.

Die Zeit, innerhalb welcher der aktuelle Widerstandswert bis zur nächsten Werteänderung am Netz war, wird angezeigt. Das Anzeige- und Ansprechverhalten des IMD kann abschließend über Softkeys bewertet und protokolliert werden.

Prüfgeräte DIN VDE 0100/IEC 60364-6

Sonderfunktionen PROFITEST MXTRA

Restspannung ermitteln / Netzschwankungen erkennen (nur PROFITEST MXTRA)

Die Vorschrift EN 60204 fordert, dass an jedem berührbaren aktiven Teil einer Maschine, an welchem während des Betriebs eine Spannung von mehr als 60 V anliegt, nach dem Abschalten der Versorgungsspannung die Restspannung zwischen L und PE innerhalb von 5 s auf einen Wert von 60 V oder weniger abgesunken sein muss.


Mit dem PROFITEST MXTRA erfolgt die Prüfung auf Span-

nungsfreiheit durch eine Spannungsmessung, bei der die Entladezeit tu gemessen wird wie folgt:

Ures

ŧυ

Bei Spannungseinbrüchen von mehr als 5% (innerhalb von 0,7 s) der aktuellen Netzspannung wird die Stoppuhr gestartet und nach 5 s die aktuelle Unterspannung durch Ures angezeigt und durch die rote Diode UL/RL signalisiert.

7600

₹**5**5

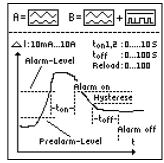
f 50.0Hz

S

Limits

Ermittlung der Restspannung

Sonderfunktionen PROFITEST MXTRA

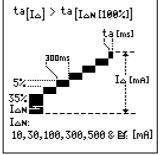

Prüfen von Differenzstrom-Überwachungsgeräten (RCMs) (nur PROFITEST MXTRA)

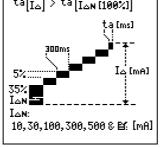
RCMs (Residual Current Monitor) überwachen den Differenzstrom in elektrischen Anlagen und zeigen diesen kontinuierlich an. Wie bei Fehlerstromschutzeinrichtungen können externe Schalteinrichtungen angesteuert werden, um die Spannungsversorgung bei Überschreiten eines bestimmten Differenzstroms abzuschalten. Der Vorteil eines RCMs liegt jedoch darin, dass der Anwender rechtzeitig über Fehlerströme in

der Anlage informiert wird, bevor es zur Abschaltung kommt.

Gegenüber den Einzelmessungen von $I_{\Delta N}$ und t_{Δ} muss hier das Messergebnis manuell beurteilt werden.

Wird ein RCM in Verbindung mit einer externen Schalteinrichtung betrieben, so ist diese Kombination wie ein RCD zu prüfen.

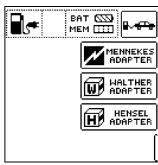

Intelligente Rampe (nur PROFITEST MXTRA)


Der Vorteil dieser Messfunktion gegenüber den Einzelmessungen von $I_{\Delta N}$ und t_{A} ist die gleichzeitige Messung von Abschaltzeit und Abschaltstrom durch stufenförmig ansteigenden Prüfstrom, wobei der RCD nur ein einziges mal ausgelöst werden muss.

Die intelligente Rampe wird zwischen Stromanfangswert (35% $I_{\Delta N}$) und Stromendwert (130% I_{AN}) in zeitliche Abschnitte zu je 300 ms unterteilt. Hieraus ergibt

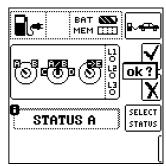
sich eine Stufung, wobei jede Stufe einem konstanten Prüfstrom entspricht, der maximal 300 ms lang fließt, sofern keine Auslösung stattfindet.

Als Ergebnis wird der Auslösestrom als auch die Auslösezeit gemessen und angezeigt.



BAT (XXX) МЕМ □□□ #:ta+la| <50₩ UIAN 10mA RCD TYP A 0.0<300ms 3 ms Limits S.OMA <10.0MA ĪΔ 5.5 mA RE < 10 Ω Un 230 U fn50.0Hz

Überprüfung der Betriebszustände eines Elektrofahrzeugs Neul an E-Ladesäulen nach IEC 61851 (nur PROFITEST MTECH+ & PROFITEST MXTRA)


Eine Ladestation ist ein zum Laden von Elektrofahrzeugen vorgesehenes Betriebsmittel gemäß IEC 61851, das als wesentliche Elemente die Steckvorrichtung, einen Leitungsschutz, eine Fehlerstrom-Schutzeinrichtung (RCD), einen Leistungsschalter sowie eine Sicherheits-Kommunikationseinrichtung (PWM) enthält. Abhängig vom Einsatzort können ggf. noch weitere Funktions-einheiten wie Netzanschluss und Zählung hinzukommen.

Simulation der Betriebszustände nach IEC 61851 mit der Prüfbox von MENNEKES

(Status A - E)

Die MENNEKES Prüfbox dient ausschließlich zur Simulation der unterschiedlichen Betriebszustände eines fiktiv angeschlossenen Elektrofahrzeuges an einer Ladeeinrichtung.

Prüfgeräte DIN VDE 0100/IEC 60364-6

Sonderfunktionen PROFITEST MXTRA

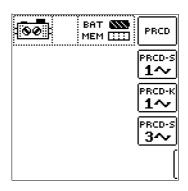
eu! Sonderfunktionen (alle Typen)

Prüfabläufe zur Protokollierung von Fehlersimulationen an PRCDs Typ S und K mit dem optionalen Adapter PROFITEST PRCD (nur PROFITEST MXTRA)

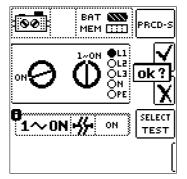
- Drei Prüfabläufe sind voreingestellt:
 - PRCD-S (1-phasig)
 - PRCD-K (1-phasig)
 - PRCD-S (3-phasig)
- Das Prüfgerät führt halbautomatisch durch sämtliche Prüfschritte:
 1-phasige PRCDs: PRCD-S: 11 Prüfschritte

PRCD-K: 4 Prüfschritte

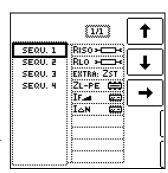
3-phasige PRCDs: PRCD-S: 18 Prüfschritte


- Jeder Prüfschritt wird durch den Anwender beurteilt und bewertet (OK/nicht OK) für eine spätere Protokollierung.
- Messen des Schutzleiterwiderstands des PRCDs durch die Funktion R_{LO} am Prüfgerät.
- Messen des Isolationswiderstands des PRCDs durch die Funktion R_{ISO} am Prüfgerät.
- Auslöseprüfung mit Nennfehlerstrom durch die Funktion I_F

 am Prüfgerät.
- Messung der Auslösezeit durch die Funktion I_{ΛN} am Prüfgerät.
- Varistorprüfung beim PRCD-K: Messung über ISO-Rampe


Weitere Informationen finden Sie im Datenblatt zum PROFITEST PRCD.

Auswahl des zu prüfenden PRCDs


Beispiel Simulation Unterbrechung

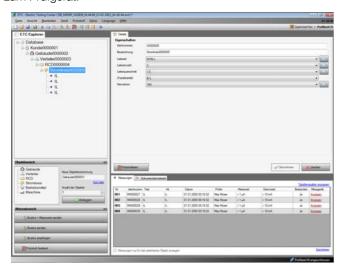
Autofunktion Prüfsequenzen

Soll nacheinander immer wieder die gleiche Abfolge von Prüfungen mit anschließender Protokollierung durchgeführt werden, wie dies z. B. bei Normen vorgeschrieben ist, empfiehlt sich der Einsatz von Prüfsequenzen.

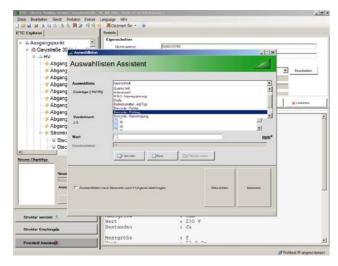
Mithilfe von Prüfsequenzen können aus den manuellen Einzelmessungen automatische Prüfabläufe zusammengestellt werden. Eine Prüfsequenz besteht aus bis zu 200 Einzelschritten, die nacheinander abgearbeitet werden.

Die Prüfsequenzen werden mithilfe des Programms ETC am PC erstellt und anschließend an die Prüfgeräte übertragen.

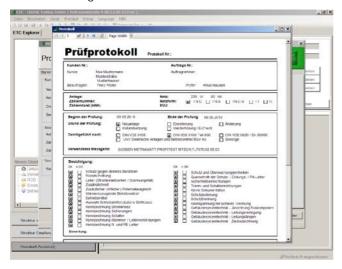
Die Parametrisierung von Messungen erfolgt ebenfalls am PC. Die Parameter können aber noch während des Prüfablaufs vor Start der jeweiligen Messung im Prüfgerät verändert werden.


Schnittstelle für *Bluetooth*® (nur PROFITEST MTECH+/MXTRA/SECULIFE IP)

Sofern Ihr PC über eine *Bluetooth*[®]-Schnittstelle verfügt, kann das Prüfgerät kabellos mit der PC-Anwendersoftware ETC zur Übertragung von Daten und Prüfstrukturen kommunizieren.


Prüfgeräte DIN VDE 0100/IEC 60364-6

PC-Anwendersoftware ETC


(Webadressen zum Herunterladen siehe Seite 16) Erstellung individueller Prüfstrukturen am PC und Übertragung zum Prüfgerät.

Bearbeiten von Auswahllisten

Protokollerstellung

Zubehör Protokollierung

PROTOKOLLmanager Professional

Protokollier-Software zum Protokollieren der elektrischen Prüfungen nach DGUV Vorschrift 3 (bisher BGV A3), VDE 0100, VDE 0701-0702; Verwaltung von Kunden, Geräten- und Installationsberichten.

ELEKTROmanager

Die Software zum Messen und Dokumentieren von Elektrogeräten und Elektroinstallationen.

Der ELEKTROmanager ist eine neue Software-Generation zur Datenerfassung und Datenverwaltung, sowie zur Steuerung von Prüfabläufen für die auf Effektivität, technische Kompetenz und juristische Sicherheit achtende Elektrofachkraft. Die Bedienung ist leicht erlernbar und weitestgehend selbsterklärend. Alle gängigen Messgeräte anderer Hersteller lassen sich mit einbinden; d. h. bei Kauf eines Neugerätes von GMC-I Messtechnik GmbH kann das vorhandene Altgerät eines anderen Herstellers weiter verwendet werden.

Software für Prüfgeräte PS3

PS3 übernimmt die mit Prüfgeräten ermittelten Messdaten und ordnet diese automatisch Tätigkeiten wie Prüfung, Wartung oder Inspektion zu. In wenigen Arbeitsschritten und mit geringem Zeitaufwand gelangen Sie zu unterschriftsreifen Prüfprotokollen und Übergabeberichten.

Standardanforderungen, wie z.B. Einlesen von Messdaten und Protokolldruck werden mit Grund- und Gerätemodul erfüllt.

Erweiterte Ansprüche wie z. B. Terminverfolgung, Prüfdatenhistorie, beliebige Datenauswahl und Listenbildung bis hin zum kompletten Objektmanagement (Geräte, Gebäude) werden mit dem Aufbaumodul und ggf. mit Zusatzmodulen abgedeckt.

Ein Export der Daten von PS3 zum Prüfgerät ist möglich. Eine Übersicht über die Leistungsfähigkeit der PS3 erhalten Sie auf unserer Homepage.

Protokoll- und Listenerstellung mit PC.doc-WORD™/EXCEL™

Voraussetzung: Microsoft®WORD™ oder Microsoft®EXCEL™ PC.doc-WORD™/EXCEL™ fügt die Prüfergebnisse und die am Prüfgeräte-Eingabemodul eingegebenen Daten in Protokoll- oder Listenformulare ein. Diese können mit Microsoft®WORD™ oder Microsoft®EXCEL™ ergänzt und ausgedruckt werden.

Prüfdatenmanagement mit PC.doc-ACCESS™

Voraussetzung: Microsoft® ACCESS™

PC.doc-ACCESS™ verwaltet Geräte-, Maschinen-, Anlagen-, Stamm- und Prüfdaten. Die Prüfdaten werden, soweit im Prüfgerät vorhanden, automatisch in Stammdaten- und Prüfdatenlisten eingetragen, die Kunden zugeordnet sind.

Die Darstellung der Prüfdaten geschieht abhängig von der Prüfvorschrift. Die Daten werden in Listen oder im Datenblattformat angezeigt und können vielfältig sortiert und gefiltert werden. Somit ist ein komplettes Prüfmanagement möglich.

Protokolle und Terminlisten werden für einstellbare Identnummernbereiche und Termine ausgedruckt.

Zu Barcodeleser, -Drucker und RFID-Leser siehe folgende Seite sowie das separate Datenblatt Identsysteme.

Prüfgeräte DIN VDE 0100/IEC 60364-6

PROFISCAN ETC (Ringbuch mit Barcodes) – Z502G Barcodeleser für RS232-Anschluss am Prüfgerät – Z502F

Barcode- und Etikettendrucker für USB-Anschluss am PC – Z721D

Barcode/Labelprinter zum Anschluss an PC für selbstklebende, wischfeste Barcode-Etiketten zur Identifizierung von Geräten und Anlagenteilen. Mit dem Barcodeleser können diese von unseren Prüfgeräten erfasst und die ermittelten Messwerte zugeordnet werden.

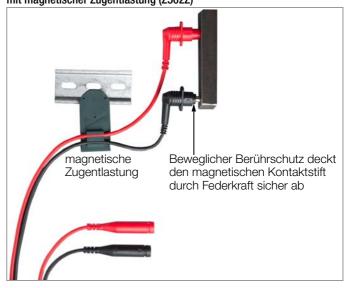
RFID-Leser SCANBASE RFID für RS232-Anschluss am Prüfgerät – Z751G

Der RFID-Leser Z751G ist zum Lesen von folgenden RFID Tag's vorprogrammiert

lug 5 VO	rprogrami	mort.		
Bestell- Nr.	Frequenz	Norm	Bauform	Verpackungs- einheit
Z751R	13,56 MHz	ISO 15693	Ø ca. 22 mm selbstklebend	500 Stück
Z751S	13,56 MHz	ISO 15693	Ø ca. 30 x 2 mm mit Loch 3 mm	500 Stück
Z751T	13,56 MHz	ISO 15693	Taubenring, Ø ca. 10 mm	250 Stück

Zubehör Stromversorgung

Zubehör Steckereinsätze und Adapter


Länderspezifischer Steckereinsatz Prüfspitzen (L 68 mm, \varnothing 2,3 mm) PRO-GB-USA (Z503B) Set-Probes (Z503F)

Flachmessabgreifer für Stromschienen PRO-PE Clip (Z503G)

Magnetische Messkontakte (Patent) mit magnetischer Zugentlastung (Z502Z)

Prüfgeräte DIN VDE 0100/IEC 60364-6

Steckereinsatz PRO-RLO-II

Steckereinsatz PRO-UNI-II

ISO-Kalibrator 1

Kalibrieradapter zur schnellen und rationellen Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände.

Kabelset KS24

Das Kabelset KS 24 besteht aus einem 4 m langen Verlängerungskabel mit fest angeschlossener Prüfspitze an einem Ende und einer berührungsgeschützten Buchse am anderen Ende sowie einem auf die Prüfspitze aufsteckbaren Krokodilclip.

Drehstromadapter

Die Drehstromadapter A3-16, A3-32 und A3-63 dienen dem problemlosen Anschließen von Prüfgeräten an 5-polige CEE-Steckdosen. Die drei Ausführungen unterscheiden sich durch die Größe des Steckers, der jeweils den 5-poligen CEE-Steckdosen mit den Nennströmen 16 A, 32 A, 63 A entspricht. Die Phasenfolge wird jeweils durch Lampen

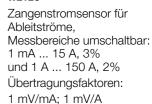
signalisiert. Die Prüfung der Wirksamkeit von Schutzmaßnahmen erfolgt über fünf berührungsgeschützte 4 mm Buchsen.

Teleskopstab Telearm 1

Fußhodensonde

Die Fußbodensonde 1081 ermöglicht die Messung des Widerstands isolierender Fußböden gemäß DIN VDE 0100 Teil 600 und EN 1081.

VARIO-STECKER-Set



Drei selbsthaltende Prüfspitzen mit Berührungsschutz zum Anschluss von Messleitungen mit 4 mm-Bananensteckern bzw. mit berührungsgeschützten Steckern an Buchsen mit Öffnungen von 3,5 mm bis 12 mm, z. B. CEE-, Perilex-Steckdosen usw.

Die Prüfspitzen passen z. B. auch in die rechteckige PE-Buchse von Perilex-Steckdosen. Maximal zulässige Betriebsspannung 600 V nach IEC 61010.

Ableitstrommessadapter PRO-AB für PROFITEST MXTRA

WZ12C

Eingangsstrom: 0 ... 10 mA Eingangsmesswiderstand: $1 k\Omega \pm 0.5 \%$ Ausgangsspannung: 10:1: 0 ... 1 V (0,1 V/mA) 1:1: 0 ... 10 V (1 V/mA) Ausgangswiderstand $10 \text{ k}\Omega$

METRAFLEX P300

Flexibler Zangenstromsensor für selektive Erdungswiderstandsmessung

Prüfgeräte DIN VDE 0100/IEC 60364-6

Zubehör für Erdungsmessung

Zangenadapter PRO-RE/2

Adapter, der auf dem Prüfstecker montiert wird, zum Anschluss der Generatorzange E-Clip 2 für die 2-Zangenoder Erdschleifen-Erdungswiderstandsmessung.

Hierdurch wird die 2-Zangen- oder Erdschleifenmessung ermöglicht.

Haspel TR25

Trommel mit Messleitung TR50

50 m Messleitung, aufgewickelt auf eine Kunststofftrommel. Der Anschluss an das eine Ende der Messleitung ist über eine in die Trommel integrierte Buchse möglich. Das andere Ende ist mit einem Bananenstecker ausgerüstet. Die Trommelachse mit Griff ist steckbar, sodass die Trommel Platz sparend aufbewahrt werden kann.

Der Widerstandsanteil des Kabels kann in der Schalterstellung R_{LO} kompensiert werden.

Adapter PRO-RE

Erder, Hilfserder, Sonde und Hilfssonde werden über die Bananenbuchsen angeschlossen und so über den Adapter, der auf dem Prüfstecker montiert wird, mit dem Prüfgerät verbunden.

Generatorzange E-Clip 2

Messbereich: 0,2 A ... 1200 A Messkategorie: 600 V CAT III Max. Leiterdurchmesser: 52 mm Übertragungsfaktor: 1000 A/1A Frequenzbereich: 40 Hz ... 5 kHz

Ausgangssignal: 0,2 mA ... 1,2 A Ausrüstung mit Laborsteckereingängen

Z3512A AC-Zangenstromsensor

umschaltbare Messbereiche 1 mA... 1/100/1000 A~ Übertragungsfaktoren

1 V/A; 100mV/A; 10 mV/A; 1 mV/A

Erdbohrer SP350

Erdungsmess-Set E-Set 3

Prüfgeräte DIN VDE 0100/IEC 60364-6

Zubehör Koffer, Rollwagen und Taschen

SORTIMO L-BOXX GM (Z503D)

Kunststoff-Systemkoffer, Außenmaße: B x H x T 450 x 255 x 355 mm

Schaumstoffeinlage Z503E für Prüfgerät und Zubehör ist getrennt zu bestellen, s. u.

Schaumstoffeinlage für SORTIMO L-BOXX GM (Z503E)

Profi-Koffer (Z502W)

Außenmaße: H x B x T 390 x 590 x 230 mm

E-CHECK-Koffer (Z502M)

Außenmaße: H x B x T 390 x 590 x 230 mm

Bestückungsbeispiele

Universaltragetasche F2000

In der Tragtasche F2000 können Prüfgerät, Steckereinsätze, Messadapter, Ersatzakkus, Registrierpapier usw. übersichtlich aufbewahrt und bequem transportiert werden.

(Außenmaße: 380 x 310 x 200 mm) (ohne Schnallen, Tagegriff und Tragegurt)

Universaltragetasche groß F2020

Außenmaße:
B x H x T
430 x 310 x 300 mm
(ohne Schnallen,
Tagegriff und
Tragegurt)

Rollwagen für Profi-Koffer (Z502W) und E-CHECK-Koffer (Z502N)

Liefermaß zusammengeklappt: 395 x 150 x 375 mm

Prüfgeräte DIN VDE 0100/IEC 60364-6

Bereitschaftstasche PROFITEST MASTER (Z502X)

Bestellangaben

Bezeichnung	Тур	Artikelnummer
Gerätevarianten PROFITEST MAST	ER	
Jniverselle Schutzmaßnahmenprüfgerä Feil 1+2+3+4+5+6+7+10 mit integri netzbetriebene Erdungswiderstandsme Jetaillierte Übersicht Leistungsumfang	ertem Speicher, Isolationsr ssungen, Autofunktion Prüf	nessung bis 1000 V, sequenzen
Grundgerät	PROFITEST MBASE+	M520S
vie Grundgerät zusätzlich mit olgenden Sonderfunktionen: - Batteriebetriebene "Akkubetrieb" Messungen: Erdungswiderstand (3-/4-Pol) Spezifischer Erdwiderstand Selektiver Erdungswiderstand Erdschleifenwiderstand	PROFITEST MPRO	M520N
vie Grundgerät zusätzlich mit olgenden Sonderfunktionen: - Auslöseprüfung bei allstromsensiti- ven RCDs und Schleifenimpedanz- messung ohne Auslösung des RCDs - Bluetooth [®] -Schnittstelle	PROFITEST MTECH+	M520R
vie Grundgerät zusätzlich mit zahl- eichen Sonderfunktionen: - Auslöseprüfung bei allstromsensiti- ven RCDs und Schleifenimpedanz- messung ohne Auslösung des RCDs - Prüfung von IMDs - Prüfung von RCMs nach EN 61557 Teil 11 - Batteriebetriebene "Akkube- trieb"Messungen: Erdungswiderstand (3-/4-Pol) Spezifischer Erdwiderstand Selektiver Erdungswiderstand Erdschleifenwiderstand - Ableitstrommessung - Restspannung prüfen - Intelligente Rampe - Bluetooth®-Schnittstelle	PROFITEST MXTRA	M520P
vie Grundgerät zusätzlich mit zahl- eichen Sonderfunktionen: - Auslöseprüfung bei allstromsensiti- ven RCDs und Schleifenimpedanz- messung ohne Auslösung des RCDs nach EN 61557 Teil 11 - Ableitstrommessung - Prüfung von IMDs - Bluetooth®-Schnittstelle	SECULIFE IP	M520U

Zubehör Stromversorgung Prüfgerät 8 I.S.D-NIMH-Akkus mit reduzierter Selbstentladung (Mignon-Zellen (Alpa) 2000 mAh mit verschweißten Zellen Weitbereichslädegerät zum Laden der im PROFITEST MASE+ MTECH + MPRO, MXTRA und SECULIFE in ein- gesetzten Akkus Eingang: 100 240 V.AC; Ausgang: 16,5 V DC, 1 A Zubehör Steckereinsätze und Adapter Steckereinsätz Schuko: D, A, NL, Fetc. Weit PRO-Schuko, jedoch mit abge- winkeltem Schukostecker Steckereinsätz gemäß SEV: CH Steckereinsätz gemäß SEV: CH Steckereinsätz für Südafrika Z-/3-Pol-Messadapter für Dreh- strom- und Drehfeld-Anlagen 300 V/1 A CAT III mit Schutzkappe 600 V/1 A CAT IV 600 V, T A, Arbeitsbereich der Nesspitzen ein mittels bewährten Kontaktlamellen Stare 4 mm- Buchse im Drückselte und sicheren Kontaktler mit 8 mit Schutzen il Berührschutz – Schollen mit Schutzen Schutzen – Schollen mit Schollen mit Schutzen – Schollen mit Schollen mit Schutzen – Schollen mit Schol	Damaiahauma	Tim	Autitralianumaman
8 LSD-NiMH-Akkus mit reduzierter Selbsteritladung (Mignon-Zellen, A) a 2000 mAh mit verschweißten Zellen Weitbereichsladegerät zum Laden der im PROFITEST MBASE+ MTECH+, messetzten Akkus Eingang: 100 240 V AC; Ausgang: 16,5 V DC, 1 A Zubehör Steckereinsätze und Adapter Steckereinsätz Schuko: D, A, NL, F etc. Wei PRO-Schuko, jedoch mit abge- winkeltem Schukostecker Steckereinsatz Schuko: D, A, NL, F etc. Wei PRO-Schuko, jedoch mit abge- winkeltem Schukostecker Steckereinsatz mit Adapter für GB & USA Steckereinsatz für Südafrika PRO-CH GT23225000R0001 Steckereinsatz für Südafrika PRO-BRAS Z-/3-Pol-Messadapter für Dreh- storm- und Drehfeld-Anlagen 300 V/1 A CAT IV mit Schutzkappe 600 V/1 A CAT II mit Schutzkappe 600 V/1 A CAT IV mit Schutzkapp	Bezeichnung	Тур	Artikelnummer
8 LSD-NiMH-Akkus mit reduzierter Selbsteritladung (Mignon-Zellen, A) a 2000 mAh mit verschweißten Zellen Weitbereichsladegerät zum Laden der im PROFITEST MBASE+ MTECH+, messetzten Akkus Eingang: 100 240 V AC; Ausgang: 16,5 V DC, 1 A Zubehör Steckereinsätze und Adapter Steckereinsätz Schuko: D, A, NL, F etc. Wei PRO-Schuko, jedoch mit abge- winkeltem Schukostecker Steckereinsatz Schuko: D, A, NL, F etc. Wei PRO-Schuko, jedoch mit abge- winkeltem Schukostecker Steckereinsatz mit Adapter für GB & USA Steckereinsatz für Südafrika PRO-CH GT23225000R0001 Steckereinsatz für Südafrika PRO-BRAS Z-/3-Pol-Messadapter für Dreh- storm- und Drehfeld-Anlagen 300 V/1 A CAT IV mit Schutzkappe 600 V/1 A CAT II mit Schutzkappe 600 V/1 A CAT IV mit Schutzkapp	Zubehör Stromversorgung Prüfaer	ät	
der im PROFITEST MASSE+ MIECH +, MPRO, MXTRA und SECULIFE IP eingesetzten Akkus Eingang: 100 240 V AC; Ausgang: 16.5 V DC, 1 A Zubehör Steckereinsätze und Adapter Zubehör Steckereinsätze und Adapter Steckereinsatz Schuko: D, A, NL, Feit. Wei PRO-Schuko, jedoch mit abgewinkeltem Schukostecker PRO-W Z503A Steckereinsatz gemäß SEV: CH PRO-CH Steckereinsatz gemäß SEV: CH PRO-CH Steckereinsatz für Südafrika 2-/3-Pol-Messadapter für G8 & USA PRO-BSA Z501A Z-/3-Pol-Messadapter für Drehstorn- und Drehfeld-Anlagen 300 V/1 A CAT IV mit Schutzkappe 600 V/1 A CAT II ohne Schutz	8 LSD-NiMH-Akkus mit reduzierter Selbstentladung (Mignon-Zellen, AA) à 2000 mAh mit verschweißten Zellen		Z502H
Steckereinsatz Schuko: D, A, NL, F etc. wie PRO-Schuko, jedoch mit abgewinkeltem Schukostecker Steckereinsatz gemäß SEV: CH Steckereinsatz mit Adapter für GB & USA PRO-GB/USA-Set Steckereinsatz trüf Vaghter für GB & USA Steckereinsatz trüf Südafrika 2-/3-Pol-Messadapter für Drehstrom- und Drehfteld-Anlagen 300 V/1 A CAT I V mit Schutzkappe 600 V/1 A CAT II mit Schutzkappe 600 V/1 A CAT II mit Schutzkappe 600 V/1 A CAT II or Schu	der im PROFITEST MBASE+ MTECH +, MPRO, MXTRA und SECULIFE IP ein- gesetzten Akkus Eingang: 100 240 V AC;		Z502R
Steckereinsatz Schuko: D, A, NL, F etc. wie PRO-Schuko, jedoch mit abgewinkeltem Schukostecker Steckereinsatz gemäß SEV: CH Steckereinsatz mit Adapter für GB & USA PRO-GB/USA-Set Steckereinsatz trüf Vaghter für GB & USA Steckereinsatz trüf Südafrika 2-/3-Pol-Messadapter für Drehstrom- und Drehfteld-Anlagen 300 V/1 A CAT I V mit Schutzkappe 600 V/1 A CAT II mit Schutzkappe 600 V/1 A CAT II mit Schutzkappe 600 V/1 A CAT II or Schu	Zuhahör Stackarainsätza und Adar	nter	
wie PRO-Schuko, jedoch mit abge- winkeltem Schukostecker Steckereinsatz gemäß SEV: CH PRO-CH Steckereinsatz gemäß SEV: CH Steckereinsatz gemäß SEV: CH PRO-CH Steckereinsatz gemäß SEV: CH PRO-BSA Steckereinsatz gemäß SEV: CH PRO-BSA Steckereinsatz gemäß SEV: CH PRO-RSA Z501A PRO-RSA Z501A PRO-RSA Z501A Z501C Z503C Set-Prüfspitzen (rot / schwarz) CAT III / 600 V, 1 A, Arbeitsbereich der Stromschiene mittels bewährten Kontaktiderung an der Vorder- und Rückseite der Stromschiene mittels bewährten Kontaktiderlen. Starre d mm- Buchse im Drückerteil, geeignet zur Aufnahme federnder 4 mm-Stecker mit starrer Isolierhüse. Z503F PRO-PE Clip Z503G PRO-P			GTZ3228000R0001
Steckereinsatz mit Adapter für GB & USA PRO-CH GTZ3225000R0001 Steckereinsatz mit Adapter für GB & USA PRO-GB/USA-Set Z503B Steckereinsatz für Südafrika PRO-RSA Z501A PRO-A3-II prominer RS01A Z501A PRO-BE Clip Z503G PRO-PE Clip Z503G			
Steckereinsatz mit Adapter für GB & USA PRO-GB/USA-Set Z503B Steckereinsatz für Südafrika PRO-RSA Z501A 2-/3-Pol-Messadapter für Drehstrom- und Drehfeld-Anlagen 300 V/1 A CAT IV mit Schutzkappe 600 V/1 A CAT II mit Schutzkappe 600 V/1 A CAT IV 800 V/1 A CAT IV			
Steckereinsatz für Südafrika 2-/3-Pol-Messadapter für Drehstrom- und Drehfeld-Anlagen 300 V/1 A CAT III mit Schutzkappe 600 V/16 A CAT II ohne Schutzkappe 600 V/16 A CAT II ohne Schutzkappe 600 V/16 A CAT III ohne Schutzkappe 600 V/16 A CAT IV 600 V, 1 A, Arbeitsbereich 61 der Messspitzen 68 mm – Durch- 61 messer 2,3 mm 62 Set-Probes 62 Set-Probes 75 Set-Probes	•		
2-/3-Pol-Messadapter für Drehstrom- und Drehfeld-Anlagen 300 V/1 A CAT III mit Schutzkappe 600 V/1 A CAT IV Set-Probes 610 Set-Probes 7503F PRO-A3-II probes 7503F PRO-BC Clip 7503G PRO-PE Clip 7503G PR	<u>'</u>		
strom- und Drehfeld-Anlagen 300 V/1 A CAT III mit Schutzkappe 600 V/1 A CAT III mit Schutzkappe 600 V/1 A CAT III mit Schutzkappe 600 V/16 A CAT III ohne Schutzkappe 600 V/16 A CAT IV 610 V/16 A CAT IV 610 V/16 A CAT IV 710 Crehstromadapter 5-polig 610 CEE-Steckdosen 63 A 620 VARIO-STECKER-Set 600 V/16 A CAT IV 610 V/16 A CAT IV 710 CP Instromadapter 5-polig 610 CEE-Steckdosen 63 A 620 VARIO-STECKER-Set 600 V/16 A CAT IV 710 CP Instromadapter 2 Prüfung der Genauig- ekiet von Messgeräten für Isolationswider- stände und niederohmige Widerstände 610 V/16 A CAT IV 710 CP Instromadapter 2 Prüfung der Genauig- ekiet von Messgeräten für Isolationswider- stände und niederohmige Widerstände 610 V/16 A CAT IV 710 CP Instromadapter 2 Prüfung der Genauig- ekiet von Messgeräten für Isolationswider- stände und niederohmige Widerstände 610 V/16 A CAT IV 710 CP Instromadapter 3 Prüfung der Genauig- ekiet von Messgeräten für Isolationswider- stände und niederohmige Widerstände 610 V/16 A CAT IV 710 CP Instromadapter 3 Prüfung der Genauig- ekiet von Messgeräten für Isolationswider- stände und niederohmige Widerstände 610 Ableitstrommessadapter als Vor-		THO HOA	25017
ralkabeln mit geraden Kabeln à 10 m Set-Prüfspitzen (rot / schwarz) CAT III / 600 V, 1 A, Arbeitsbereich der Messspitzen 68 mm – Durch- messer 2,3 mm Flachmessabgreifer zur schnellen und sicheren Kontaktierung an Stromschienen. Kräftige Kontaktie- rung an der Vorder- und Rückseite der Stromschiene mittels bewährten Kontaktlamellen. Starre 4 mm- Buchse im Drückerleil, geeignet zur Aufnahme federnder 4 mm-Stecker mit starrer Isolierhülse. 1000 V CAT IV/32 A PRO-PE Clip Z503G PRO-PE Clip Z503G PRO-PE Clip Z503G Z503F PRO-PE Clip Z503G A3 - Magnetische Messspitzen Z502Z Z502Z Z501P	strom- und Drehfeld-Anlagen 300 V/1 A CAT IV mit Schutzkappe 600 V/1 A CAT III mit Schutzkappe 600 V/16 A CAT II ohne Schutzkappe	PRO-A3-II	Z5010
CAT III / 600 V, 1 A, Arbeitsbereich der Messspitzen 68 mm – Durchmesser 2,3 mm Flachmessabgreifer zur schnellen und sicheren Kontaktierung an Stromschienen. Kräftige Kontaktierung an der Vorder- und Rückseite der Stromschiene mittels bewährten Kontaktlamellen. Starre 4 mm-Buchse im Drückerteil, geeignet zur Aufnahme federnder 4 mm-Stecker mit starrer Isolierhülse. 1000 V CAT IV/32 A 2 magnetische Messkontakte mit Berührschutz – Set mit Magnethalter Messkontaktdurchmesser 5,5 mm isoliert, CAT III 1.000 V / 4 A, Temperatur von –10 °C bis 60 °C, unter Normbedingungen und bei Flachkopfschrauben 1.200 g Haftkraft senkrecht zur Kontaktfläche; Messgeräteanschluss für PRO-A3-II über 4 mm-Buchsen mit 10 m Kabel in 2-Leiter-Messtechnik für PE-Messungen und ähnliche 300 V/16 A CAT IV Drehstromadapter 5-polig für CEE-Steckdosen 16 A Drehstromadapter 5-polig für CEE-Steckdosen 32 A Drehstromadapter 5-polig für CEE-Steckdosen 63 A VARIO-STECKER-Set Ableitstrommessadapter als Vor-		PRO-A3-II ncc	Z503C
und sicheren Kontaktierung an Stromschienen. Kräftige Kontaktierung an der Vorder- und Rückseite der Stromschiene mittels bewährten Kontaktlamellen. Starre 4 mm-Buchse im Drückerteil, geeignet zur Aufnahme federnder 4 mm-Stecker mit starrer Isolierhülse. 1000 V CAT IW/32 A 2 magnetische Messkontakte mit Berührschutz – Set mit Magnethalter Messkontaktdurchmesser 5,5 mm isoliert, CAT III 1.000 V / 4 A, Temperatur von –10 °C bis 60 °C, unter Normbedingungen und bei Flachkopfschrauben 1.200 g Haftkraft senkrecht zur Kontaktfläche; Messgeräteanschluss für PRO-A3-II über 4 mm-Buchsen mit 10 m Kabel in 2-Leiter-Messtechnik für PE-Messungen und ähnliche 300 V/16 A CAT IV prehstromadapter 5-polig für CEE-Steckdosen 16 A Drehstromadapter 5-polig für CEE-Steckdosen 32 A Drehstromadapter 5-polig für CEE-Steckdosen 63 A VARIO-STECKER-Set Kalibrieradapter zur Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände Ableitstrommessadapter als Vor-	Set-Prüfspitzen (rot / schwarz) CAT III / 600 V, 1 A, Arbeitsbereich der Messspitzen 68 mm – Durch- messer 2,3 mm		
1000 V CAT IV/32 A PRO-PE Clip Z503G 2 magnetische Messkontakte mit Berührschutz – Set mit Magnethalter Messkontaktdurchmesser 5,5 mm isoliert, CAT III 1.000 V / 4 A, Temperatur von –10 °C bis 60 °C, unter Normbedingungen und bei Flachkopfschrauben 1.200 g Haftkraft senkrecht zur Kontaktfläche; Messgeräteanschluss für PRO-A3-II über 4 mm-Buchsen Messspitzen Z502Z mit 10 m Kabel in 2-Leiter-Messtechnik für PE-Messungen und ähnliche 300 V/16 A CAT IV PRO-RLO-II Z501P mit 3 Anschlusskabel für beliebige Anschlussnormen 300 V/16 A CAT IV PRO-UNI-II Z501R Drehstromadapter 5-polig für CEE-Steckdosen 16 A A3-16 GTZ360200R0001 Drehstromadapter 5-polig für CEE-Steckdosen 32 A A3-32 GTZ360300R0001 Drehstromadapter 5-polig für CEE-Steckdosen 63 A A3-63 GTZ3604000R0001 VARIO-STECKER-Set Z500A Z500A Kalibrieradapter zur Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände Ableitstrommessadapter als Vor-	und sicheren Kontaktierung an Stromschienen. Kräftige Kontaktie- rung an der Vorder- und Rückseite der Stromschiene mittels bewährten Kontaktlamellen. Starre 4 mm- Buchse im Drückerteil, geeignet zur Aufnahme federnder 4 mm-Stecker		
Berührschutz – Set mit Magnethalter Messkontaktdurchmesser 5,5 mm isoliert, CAT III 1.000 V / 4 A, Temperatur von –10 °C bis 60 °C, unter Normbedingungen und bei Flachkopfschraukon 1.200 g Haftkraft senkrecht zur Kontaktfläche; Messgeräteanschluss für PRO-A3-II über 4 mm-Buchsen Messpitzen Z502Z mit 10 m Kabel in 2-Leiter-Messtechnik für PE-Messungen und ähnliche 300 V/16 A CAT IV PRO-RLO-II Z501P mit 3 Anschlusskabel für beliebige Anschlussnormen 300 V/16 A CAT IV PRO-UNI-II Z501R Drehstromadapter 5-polig für CEE-Steckdosen 16 A A3-16 GTZ360200R0001 Drehstromadapter 5-polig für CEE-Steckdosen 32 A A3-32 GTZ360300R0001 Drehstromadapter 5-polig für CEE-Steckdosen 63 A A3-63 GTZ3604000R0001 VARIO-STECKER-Set Z500A Z500A Kalibrieradapter zur Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände Ableitstrommessadapter als Vor-		PRO-PE Clip	Z503G
nik für PE-Messungen und ähnliche 300 V/16 A CAT IV mit 3 Anschlusskabel für beliebige Anschlussnormen 300 V/16 A CAT IV Drehstromadapter 5-polig für CEE-Steckdosen 16 A Drehstromadapter 5-polig für CEE-Steckdosen 32 A Drehstromadapter 5-polig für CEE-Steckdosen 32 A A3-32 GTZ3602000R0001 Drehstromadapter 5-polig für CEE-Steckdosen 63 A A3-63 GTZ3604000R0001 VARIO-STECKER-Set Z500A Kalibrieradapter zur Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände Ableitstrommessadapter als Vor-	Berührschutz – Set mit Magnethalter Messkontaktdurchmesser 5,5 mm iso- liert, CAT III 1.000 V / 4 A, Temperatur von –10 °C bis 60 °C, unter Normbe- dingungen und bei Flachkopfschrau- ben 1.200 g Haftkraft senkrecht zur Kontaktfläche; Messgeräteanschluss für PRO-A3-II über 4 mm-Buchsen		Z502Z
mit 3 Anschlusskabel für beliebige Anschlussnormen 300 V/16 A CAT IV Drehstromadapter 5-polig für CEE-Steckdosen 16 A Drehstromadapter 5-polig für CEE-Steckdosen 32 A Drehstromadapter 5-polig für CEE-Steckdosen 32 A A3-32 GTZ3602000R0001 Drehstromadapter 5-polig für CEE-Steckdosen 63 A A3-63 GTZ3604000R0001 VARIO-STECKER-Set Z500A Kalibrieradapter zur Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände Ableitstrommessadapter als Vor-			
schlussnormen 300 V/16 A CAT IV PRO-UNI-II Z501R Drehstromadapter 5-polig für CEE-Steckdosen 16 A A3-16 GTZ3602000R0001 Drehstromadapter 5-polig für CEE-Steckdosen 32 A A3-32 GTZ3603000R0001 Drehstromadapter 5-polig für CEE-Steckdosen 63 A A3-63 GTZ3604000R0001 VARIO-STECKER-Set Z500A Z500A Kalibrieradapter zur Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände Ableitstrommessadapter als Vor-		PRO-RLO-II	Z501P
für CEE-Steckdosen 16 Å A3-16 GTZ3602000R0001 Drehstromadapter 5-polig für CEE-Steckdosen 32 Å A3-32 GTZ3603000R0001 Drehstromadapter 5-polig für CEE-Steckdosen 63 Å A3-63 GTZ3604000R0001 VARIO-STECKER-Set Z500A Z500A Kalibrieradapter zur Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände Ableitstrommessadapter als Vor-	schlussnormen 300 V/16 A CAT IV	PRO-UNI-II	Z501R
für CEE-Steckdosen 32 Å A3-32 GTZ3603000R0001 Drehstromadapter 5-polig für CEE-Steckdosen 63 Å A3-63 GTZ3604000R0001 VARIO-STECKER-Set Z500A Z500A Kalibrieradapter zur Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände Ableitstrommessadapter als Vor-	für CEE-Steckdosen 16 A	A3-16	GTZ3602000R0001
für CEE-Steckdosen 63 Å A3-63 GTZ3604000R0001 VARIO-STECKER-Set Z500A Z500A Kalibrieradapter zur Prüfung der Genauigkeit von Messgeräten für Isolationswiderstände und niederohmige Widerstände Ableitstrommessadapter als Vor-	für CEE-Steckdosen 32 Å	A3-32	GTZ3603000R0001
Kalibrieradapter zur Prüfung der Genauig- keit von Messgeräten für Isolationswider- stände und niederohmige Widerstände Ableitstrommessadapter als Vor- Kalibrieradapter zur Prüfung der Genauig- keit von Messgeräten für Isolationswider- stände und niederohmige Widerstände ISO-Kalibrator 1 M662A		A3-63	GTZ3604000R0001
keit von Messgeräten für Isolationswider- stände und niederohmige Widerstände Ableitstrommessadapter als Vor- M662A M662A		Z500A	Z500A
	keit von Messgeräten für Isolationswider- stände und niederohmige Widerstände	ISO-Kalibrator 1	M662A
		PRO-AB	Z502S

Prüfgeräte DIN VDE 0100/IEC 60364-6

Bezeichnung	Тур	Artikelnummer
Zubehör		
Verlängerungskabel 4 m	KS24	GTZ3201000R0001
Teleskopstab für PE-Messung	Telearm 1	GTZ3232000R0001
Dreiecksonde für Fußbodenmessung gemäß EN 1081 und DIN VDE 0100	Sonde 1081	GTZ3196000R0001
Zangenstromsensor für Ableitströme umschaltbar, 1 mA 15 A, 3% und 1 A 150 A, 2%	WZ12C ^{D)}	Z219C
Flexibler AC-Stromsensor 3/30/300 A, 1 V/100 mV/10 mV/A, mit Batterien, Messkopflänge 45 cm	METRAFLEX P300	Z502E
Zubehör Koffer und Rollwagen		
Bereitschaftstasche mit Außen- taschen für Zubehör	Bereitschaftstasche PROFITEST MASTER	Z502X
Aluminium-Koffer für Prüfgerät und Zubehör	E-CHECK-Koffer	Z502M
Der E-CHECK-Koffer kann am Roll- wagen (Trolley) montiert werden	Rollwagen für E-CHECK-Koffer	Z502N
Universaltragetasche	F2000 ^{D)}	Z700D
Universaltragetasche groß	F2020	Z700F
Kunststoff-Systemkoffer	SORTIMO L-BOXX GM	Z503D
Schaumstoffeinlage für SORTIMO L- BOXX GM mit Inneneinteilung für PRO- FITEST MASTER	Foam SORTIMO L-BOXX Profitest M	Z503E
Profi-Koffer bedruckt und mit Innenein- teilung für Sets mit PROFITEST MASTER plus Zubehör, inkl. Trolleyhalter	Profi-Koffer	Z502W
Zubehör für Erdungsmessung		
Messadapter zum Anschluss einer		
zweiten Zange (Generatorzange), ermöglicht die 2-Zangen-Messme- thode (Erdschleifenmessung)	PRO-RE-2	Z502T
Adapter zum Anschluss für Erdungs- zubehör zur 3-Pol-, 4-Pol-Messung sowie selektiven Erdungswider- standsmessung	PRO-RE	Z501S
Generatorzange für 2-Zangen- Messmethode (Erdschleifenmessung) Übetragungsfaktor: 1000 A/1A Strommessbereich: 0,2 A 1200 A Ausgangssignal: 0,2 mA 1,2 A	E-CLIP 2	Z591B
Zangenstromsensor für selektive Erdungsmessung und als Mess-zange für 2-Zangen-Messmethode (Erdschleifenmessung), umschaltbare Messbereiche 0 1/100/1000 A~ AV~ ± (0,7% 0,2%)	Z3512A ^{D)}	Z225A
Haspel mit 25 m Messleitung	Haspel TR25	GTZ3303000R0001
Trommel mit 50 m Messleitung	Trommel TR50	GTY1040014E34
Erdbohrer 35 cm lang für Erdungsmessung	Erdbohrer SP350	GTZ3304000R0001
Erdungsmess-Set: Kunstlederta- sche mit 2 Haspeln, 2 Messleitun- gen je 25 m, 1 Messleitung 40 m, 2 Messleitungen je 3 m, 4 Erdspießen (verzinkt), 2 Spießziehern, 1 Hammer	E-Set 3	GTZ3301005R0001
Erdungsmess-Set: Kunstlederta-		
sche mit 2 Haspeln, 2 Messleitun- gen je 25 m, 1 Messleitung 40 m, 2 Messleitungen je 3 m, 4 Erdbohrer	E-Set 4	Z590A

Bezeichnung	Тур	Artikelnummer
Starterpakete		
bestehend aus PROFITEST MBASE+, VARIO-STECKER-Set und Universal- tragtasche F2000	Starterpaket BASE plus	M501A
bestehend aus PROFITEST MTECH+, VARIO-STECKER-Set und Kunststoff- systemkoffer SORTIMO L-BOXX GM mit Schaumstoffeinlage	Starterpaket TECH plus	M501B
bestehend aus PROFITEST MTECH+, VARIO-STECKER-Set, Erdspieß SP350, Kunststofftrommel TR50, Adapter PRO-RLO II und Masterkof- fer Gerät (Z502A)	Meisterpaket TECH plus	M501C
bestehend aus PROFITEST MTECH+, VARIO-STECKER-Set und E-CHECK-Koffer	E-CHECK Set plus	M501D
bestehend aus PROFITEST MXTRA, VARIO-STECKER-Set, Kunststoffsys- temkoffer SORTIMO L-BOXX GM mit Schaumstoffeinlage, Komp. Akku- Pack Master und Weitbereichslade- gerät	Starterpaket XTRA	M500V
bestehend aus PROFITEST MXTRA, VARIO-STECKER-Set, Profi-Koffer, Adapter PRO-RLO-II, Komp. Akku- Pack Master und Weitbereichslade- gerät	Meisterpaket XTRA	M500W
bestehend aus PROFITEST MXTRA, VARIO-STECKER-Set, Profi-Koffer, Ableitstrommessadapter PRO-AB, Komp. Akku-Pack Master und Weit- bereichsladegerät	MEDpaket XTRA	M500X
bestehend aus PROFITEST MXTRA, VARIO-STECKER-Set, Profi-Koffer, Generatorzange E-Clip 2 und Messzange für Erdungsmessung Z3512A, Messadapter für 2-Zangen-Messmethode PRO-RE-2, Komp. Akku-Pack Master und Weitbereichsladegerät	Profipaket XTRA	M500Y

Barcodeleser, -Drucker und RFID-Leser siehe separates Datenblatt Identsysteme Barcodeleser für RS232-Anschluss Barcode Profiscannermit ca. 1 m langen Spiralkabel RS232 Z502F Ringbuch mit vorgedruckten PROFISCAN ETC D Z502G Barcodes zum Abscannen (deutsch) RFID Lese- und Schreibgerät SCANBASE RFID Z751G

PC-Auswerte-Software

Weitere Informationen zur Software finden Sie im Internet unter

http://www.gossenmetrawatt.com

 $(\rightarrow \mathsf{Produkte} \xrightarrow{} \mathsf{Pr\"{u}ftechnik} - \mathsf{elektrisch} \xrightarrow{} \mathsf{Pr\"{u}fung} \ \mathsf{elektr}. \ \mathsf{Installationen}$

→ PROFITEST MASTER)

http://www.gossenmetrawatt.com

(o Produkte o Software o Software für Prüfgeräte)

Weitere Informationen zum Zubehör finden Sie im Katalog Mess- und Prüftechnik

D) Datenblatt verfügbar

PROFITEST MBASE+, MTECH+, MPRO, MXTRA, SECULIFE IP Prüfgeräte DIN VDE 0100/IEC 60364-6

 $\textbf{Erstellt in Deutschland} \bullet \ddot{\textbf{A}} \textbf{nderungen vorbehalten} \bullet \textbf{Eine PDF-Version finden Sie im Internet}$